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Abstract In the chemical community the need for representing chemi-
cal structures within a given family and of efficiently enumerating these
structures suggested the use of computers and the implementation of fast
enumeration algorithms. This paper considers the isomeric acyclic struc-
tures focusing on the enumeration of the alkane molecular family. For this
family, Trinajstić et al. ([12]) devised an enumeration algorithm which is the
most widely known and utilized nowadays. Kvasnička and Pospichal ([9])
have proposed an algorithmic scheme which, from the computational com-
plexity point of view, can prove to be more efficient than the Trinajstić one,
nevertheless, this algorithm, to the best of our knowledge, has never been
implemented. Indeed an efficient implementation requires the introduction
of non trivial data structures and other computational tricks. The main
contribution of this paper consists of the definition of the implementation
details of Kvasnička-Pospichal’s algorithm, in a comparison of Trinajstić’s,
Kvasnička-Pospichal’s and two new algorithms, proposed here, in terms of
both computational complexity analysis and running times.

1 Introduction

The enumeration of the alkane molecular family is a problem whose roots go
back to the nineteenth century. Alkanes are chemical compounds with iden-
tical molecular formulae and weights but differing at least in some physical
and/or chemical properties leading to different structures. Alkanes belong
to the general class of isomeric acyclic structures. The term isomerism and
the definition of isomers were introduced in 1830 by Berzelius ([3]).

? Part of this work has been developed during a visit of the first two authors at
the EPFL of Lausanne
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The alkane molecular family is partitioned into classes of homologous
molecules, that is molecules with the same numbers of carbonium and hy-
drogen atoms; the n-th class is characterized by the formula CnH2n+2, n =
1, 2, . . ..

An alkane molecule is usually represented by indicating the carbonium
atoms and their (primary) links, omitting to represent hydrogen atoms (see
Figure 1), whose placement can be obtained automatically. When n is suffi-
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Fig. 1 C3H8 propane and C4H10 butanes

ciently large (n ≥ 4), to the same formula correspond molecules with differ-
ent structures. Take as an example butane (C4H10): there are two possible
molecular structures (nbutane and isobutane) as depicted in Figure 1.

Alkanes can be represented by acyclic connected graphs whose nodes
correspond to carbonium atoms and edges correspond to the primary links.
There is a one-one correspondence between elements in the family of alkanes
and elements in the family of the connected acyclic graphs (i.e. trees) whose
nodes have degree less than or equal to 4, therefore an alkane molecule can
be represented by such a degree constrained tree.

At the end of the 19-th century, Cayley was the first to realize the im-
portance of tree mathematical theory in the enumeration of isomeric acyclic
structures ([4]). He enumerated manually the alkane isomers and alkyl radi-
cals with up to n = 13 carbonium atoms, though introducing some counting
errors. This enumeration had a considerable impact on chemists of that time.

Subsequently, the development took a turn to computer-oriented meth-
ods for the enumeration and generation of isomeric structures: the devel-
opment of techniques for the generation of graphs (chemical structures) by
computing devices has made possible the direct enumeration of isomeric
acyclic structures by way of enumerating algorithms. The pioneering con-
tributions in this area were made by Lederberg and his group ([10]) and
Corey and his group ([5]).

One of the possible applications of chemical tree enumeration algorithms
is the investigation of different chemical and physical properties on massive
quantities of molecules through the computation of topological indices, e.g.
the efficient computation of Hyper-Wiener index ([1]).

For these enumeration purposes, the algorithm most widely used by
chemists is that devised by Trinajstić et al. in [12]. In 1991, Kvasnička and
Pospichal ([9]) proposed an algorithmic scheme which in principle can be
more efficient than the other one, depending on its actual implementation.
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However the details described in [9] are not sufficient to implement a com-
puter code. Here we propose, to our knowledge, the first implementation of
the Kvasnička and Pospichal algorithm. Moreover, in this paper we intro-
duce two new algorithms for the generation of the alkanes molecular family
based on Reverse Search ([2]) which is a technique to avoid duplicated trees
in the enumeration.

In section 2 we introduce the molecular codes used to encode alkanes,
the two algorithms proposed in literature ([12,9]) are described in section
3, and our new algorithms are presented in section 4. The details needed
to implement our algorithms as well as that in [9] are also reported. The
computational complexity analysis of all algorithms is carried out in section
5. Section 6 reports running times comparison of the algorithms applied to
molecules with up to n = 27 carbonium atoms. Some conclusions are drawn
in section 7.

Hereafter, we denote by n-tree and n-rooted respectively a tree and a
rooted tree with n nodes. For the sake of simplicity, we use the expression
“tree” or “alkane” as a synonymous with “degree constrained tree”.

2 Tree codes

In order to efficiently enumerate degree constrained trees, data must be
suitably encoded: the motivation is that a code can be easily handled by
computer program. In [11], the author lists some desirable properties for
a molecular code such as being linear, unique, well-defined, brief, simple,
easily comprehensible to chemists, and efficiently encodable and decodable.

The codes used in this paper are the N -tuple code ([11,12]) and the
centered N -tuple code proposed in [6] hereafter called CN -tuple code for
short. We define the N -tuple code for a rooted tree, then we extend this
definition to an unrooted tree. The definition of CN -tuple code for a tree
is a variant of that for the N -tuple.

First we recall that a sequence of integers C = c1c2 . . . cl is lexicograph-
ically larger than a sequence C ′ = c′1c

′
2 . . . c′l′ if i) there exists an integer j,

1 ≤ j ≤ min{l, l′}, such that ci = c′i for all i = 1, . . . , j − 1 and cj > c′j or
ii) l > l′ and ci = c′i for all i = 1, . . . , l′.

The code of a n-rooted tree, rooted in r, Tr is recursively defined as
follows: the N -tuple of a pendant node is 0; let g be the number of nodes
(v1, v2, . . . , vg) adjacent to r. In order to obtain the N -tuple of tree Tr,
rooted in r, we delete from Tr the root r together with its incident edges;
we compute the N -tuples of the subtrees rooted in v1, v2, . . . , vg; then we
concatenate these N -tuples in such a way as to obtain a lexicographically
maximum sequence S. The N -tuple code of Tr is the concatenation of g
and S.

For an unrooted tree T , all nodes of maximum degree are chosen suc-
cessively as roots and the corresponding N -tuples are computed. The N -
tuple code of T is defined as being the lexicographically maximum N -
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tuple among these. For example, the N -tuple codes for the butanes in
Figure 1 are 2100 and 3000, respectively.

To obtain the CN -tuple code, we first identify the center (or the cen-
ters) of a tree T . We delete simultaneously all pendant nodes of T together
with their incident edges, thus obtaining a smaller tree; we repeat this op-
eration until a tree with a single node (or two adjacent nodes) is obtained
which is, by definition, the center (or the centers) of T . The CN -tuple code
for a tree T is the N -tuple code of the rooted tree with the root in the
center (or the the lexicographically maximum N -tuple of the two rooted
trees rooted in the centers).

The computation of the N -tuple code and the CN -tuple code for a
n-tree requires respectively O(n2) and O(n log n) time as reported in [6].

3 Previous work

In this section we report two different enumeration algorithms: the algo-
rithm proposed by Trinajstić et al. ([12]), briefly referred to as TNKMS,
and that outlined by Kvasnička and Pospichal ([9]), briefly referred to as
KP.

The algorithm TNKMS is based on the following idea: a n-tree can be
obtained by adding one node (and one edge) to a (n− 1)-tree in such a way
that the degree constraint still holds. We refer to this class of algorithms as
one-to-one enumeration.

1 2
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2

2

1

Fig. 2 Example of one-to-one enumeration

One-to-one enumeration does not guarantee avoiding the generation of
multiple copies of the same tree. An example of enumeration is reported in
Figure 2: each arrow represents how the tree can be derived and the label
is the number of different ways in which it can be obtained. The multiple
generation of a tree starting from the same tree or from different trees
is the crucial point emerging from this class of enumeration algorithms.
Therefore the introduction of some rules which guarantee the uniqueness of
enumerated trees is required. Note that TNKMS as described in [12] does
not introduce any such rules.
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The algorithm KP, also called constructive enumeration algorithm, is
based on the following observation: an n-tree can be decomposed into one
node and one or more rooted trees; then, each rooted tree can be decomposed
in the same way, and so on. Therefore, a n-tree can be enumerated joining
one node together with one or more rooted trees in such a way that the
sum of nodes in the rooted trees is equal to n − 1. An example is given
in Figure 3: T1 is generated by joining the blank node with two 2-rooted
and one 1-rooted trees; T2 is generated by joining three 1-rooted and one
2-rooted trees.

T

T
T

3

4
5

T T1 2

Fig. 3 Examples of constructive enumeration

In [9] a more formal description of this idea is reported. In particular,
this description is based on the rules defined by Jordan’s theorem ([8]) which
guarantee the unique enumeration of trees.

Theorem 1 (Jordan 1869) Let T be a n-tree, the following three different
cases should be separately considered:

(odd case) For an odd n = 2k + 1 there exist a unique node, called the
centroid, such that all (two or more) incident subtrees are composed,
at most, by k nodes.

For an even n = 2k there exist either

(even case i) a unique node - centroid - such that all (three or more) inci-
dent subtrees are composed of less than k nodes, or

(even case ii) a unique edge, called the bicentroid, such that the incident
two subtrees are composed exactly of k nodes.

Note that to generate a degree constrained tree, we have to take into
account that we are not allowed to combine more than four rooted trees.
For example, the set of 10-trees can be generated joining one node together
with three or four rooted trees in such a way that the sum of nodes is equal
to 9 (even case i). Moreover, we can combine two rooted trees with 5 nodes
(even case ii).

Jordan’s theorem defines a way to compose rooted trees, e.g. one 4-
rooted and one 5-rooted for a 9-tree. It is clear that different trees can
be obtained by composing different rooted trees with the same cardinality.
Figure 3 shows the trees obtained by combining all the pairs of 3-rooted
trees, i.e. T3, T4 and T5.
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Finding the possible combinations of t rooted trees with no more than
k nodes is equivalent to finding all the possible combinations of t numbers
smaller than or equal to k in such a way that their sum is equal to n−1. Note
that t has to be greater than or equal to 2 according to Jordan’s theorem
and less than or equal to 4 according to the degree constraint.

KP generates all n-trees computing all the possible combinations of t
rooted trees and, for each combination, combining the rooted trees with
the same cardinality in all possible ways. We have found neither compu-
tational results for this approach nor any computer code implementing it,
therefore we devised our own implementation which required to specify data
structures and clarify the details missing in [9].

Note that both TNKMS and KP encode the enumerated trees by using
the N -tuple code.

3.1 Implementation details of KP algorithm

KP algorithm requires computing of all the sets of p-rooted trees, say Rp, for

p = 1, . . . ,
⌊n

2

⌋

to generate the set of n-trees according to the rules defined

by Jordan’s theorem and to the degree constraint.
As discussed above, a combination of t rooted trees having no more

than p nodes to build an n-tree is equivalent to a combination of t integer
numbers smaller than or equal to p whose sum is equal to n− 1. We denote
such a combination with

(a(x), b(y), c(z), d(w)) (1)

which means that x a-rooted trees and y b-rooted trees (and so on) are used
to build one n-tree and ax + by + . . . = n− 1.

Moreover, each combination of numbers generating n-tree is subject to
the following conditions ([9]) according to Jordan’s theorem and to the
degree constraint.

(Condition 1) The combination (a(x), b(y), c(z)) yielding a p-rooted tree
must be such that:
1. ax + by + cz = p− 1;
2. 1 ≤ x + y + z ≤ 3, (degree constraint);
3. a, b, c ∈ {1, . . . , p− 1}, x, y, z ∈ {0, .., 3};

(Condition 2) The combination (a(x), b(y), c(z), d(w)) yielding an n-tree
(with n odd) must be such that:
1. ax + by + cz + dw = n− 1;
2. x + y + z + w ≥ 2, (Jordan’s theorem, odd case);
3. x + y + z + w ≤ 4, (degree constraint);
4. a, b, c, d ∈ {1, . . . , bn/2c}, (Jordan’s theorem, odd case);
5. x, y, z, w ∈ {0, . . . , 4};

(Condition 3) The combination (a(x), b(y), c(z), d(w)) yielding an n-tree
(with n even) must be such that:
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1. ax + by + cz + dw = n− 1;
2. x + y + z + w ≥ 3, (Jordan’s theorem, even case i);
3. x + y + z + w ≤ 4, (degree constraint);
4. a, b, c, d ∈ {1, . . . , n/2}, (Jordan’s theorem, even case i);
5. x, y, z, w ∈ {0, . . . , 4}

(Condition 4) The combination (k(2)) yielding an n-tree (with n even) must
be such that k = n

2
, (Jordan’s theorem, even case ii);

Referring to algorithm KP summarized in Figure 4, we first compute all sets

(R[p]) of rooted trees with up to
⌊n

2

⌋

nodes generating all combinations

(a(x), b(y), c(z)) such that Condition 1 holds. Then, the set of n-trees (T ) is
generated: for odd n, KP generates all combinations (a(x), b(y), c(z), d(w))
such that Condition 2 holds and the corresponding n-trees are generated by
function Compose; in the case of even n, the n-trees are generated from
all combinations verifying Condition 3 and all combinations of two rooted

trees with
n

2
nodes verifying Condition 4.

Procedure KP (n) {
k := bn/2c; R[1..k] : sets of rooted trees; T : set of trees;
R[1] := {0}; NofAlk := 0; T := ∅;
for p = 2 to k do { {rooted tree generation}

R[p] := ∅;
for each [a(x),b(y),c(z)] s.t. Condition 1 holds do

R[p] := R[p] ∪ {Compose(R[a], x, R[b], y, R[c], z, ∅, 0)};
};
if ( Odd(n) ) { {odd n-tree generation }

for each [a(x),b(y),c(z),d(w)] s.t. Condition 2 holds do
T := T ∪ {Compose(R[a], x, R[b], y, R[c], z, R[d], w)};

} else { {even n-tree generation}
for each [a(x),b(y),c(z),d(w)] s.t. Condition 3 holds do

T := T ∪ {Compose(R[a], x, R[b], y, R[c], z, R[d], w)};
T := T ∪ {Compose(R[k], 2, ∅, 0, ∅, 0, ∅, 0)}; {Condition 4}

};
NofAlk := CardinalityOf(T );
return( NofAlk, ElapsedT ime, T );

}.

Fig. 4 Kvasnička and Pospichal algorithm

4 Two new enumeration algorithms

In this section we present two new enumeration algorithms whose main
difference with respect to TNKMS algorithm is the introduction of rules
avoiding the multiple generation of trees. The two algorithms, namely AHM
and HPVK ([7]), have the same structure but use different codes to represent
trees: AHM uses the CN -tuple code while HPVK uses the N -tuple code.
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As already discussed in section 3 (see Figure 2), the enumeration scheme
suggests the use of some rules guaranteeing the uniqueness of the enumer-
ated trees. A first attempt can be carried out by implementing a list of
already enumerated trees: a new tree is accepted if and only if it does not
belong to the list. The use of a list of codes (ordered or not) requires a large
amount of computational resources, in terms of time and memory, as we
will show in section 6.

In order to avoid the use of such a list, we introduced two techniques
which prevent the generation of multiple copies of the same tree, namely
Reverse Search (RS) and Symmetry Detection (SD).

Let To, Td be two trees such that Td can be generated adding one pen-
dant node to To in such a way that the degree constraint holds. Let the
tree generation function GT : To 7→ Td be the function describing such
operation. Moreover, let D(To) = {Td : GT (To) = Td} be the multiset of
trees generated from To and O(Td) = {To : G−1

T (Td) = To} be the multiset
of trees from which Td can be generated. Note that multiple copies of the
same tree may belong to D(To) and O(Td). For example:

D(200) = {2100, 2100, 3000}, O(31000) = {3000, 3000, 3000, 2100, 2100}.

Given a tree and a root r, for any node v let lr(v) be the distance (i.e.
the number of edges) between v and r.

RS has been introduced by Avis and Fukuda ([2]) for efficiently enumer-
ating polyhedra’s vertices and it can be considered as a particular search
on a graph.

We summarize the basic idea of Reverse Search in the following, referring
to [2] for a more formal and detailed description. Let G be a connected
graph whose vertices are the objects to be enumerated, and suppose that
we have an objective function to be maximized over all vertices of G. A
local search algorithm on G is a deterministic procedure which explores
the neighborhood of a given vertex of G to find a vertex improving the
objective function value. The search is repeated until there exist no better
neighboring vertex. For simplicity, suppose that the considered local search
avoids cycling and there is only one optimal vertex x∗. Consider now the
digraph T having the same vertices of G and the edges (x, x′) corresponding
to the moves from x to x′ performed by the local search algorithm starting
from each vertex of G. Since x∗ is the unique global optimum, T turns out
to be a spanning arborescence having x∗ as sink. Thus if we trace backward
T from x∗ systematically, e.g. by depth first search, or, in other words,
reversing the local search, we can enumerate all vertices. Note that RS does
not require storing any information about visited vertices.

By applying RS to our problem with the lexicographical order as the
objective function, we derive the following enumeration rule.

Enumeration Rule 1 (RS) An enumerated tree Td = GT (To) is accepted
if and only if To is the lexicographically maximum among the codes in O(Td).
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For example, Td = 31000 is accepted if To = 3000 and it is not accepted if
To = 2100.

Let us now illustrate the Symmetry Detection technique, that is the way
to recognize identical subtrees or symmetries within a given To. Consider
To as composed by two or more identical subtrees; clearly, it is possible to
generate two or more identical Td by adding a pendant node to any of the
identical subtrees of To. For example, Td = 2100 can be generated twice
from To = 200 (see Figure 5).

Consider To with root r and two subtrees S1 and S2 of To with roots v
and w respectively. S1 and S2 are symmetrical if and only if i) the code of
S1 is equal to that of S2 and ii) lr(v) = lr(w). The enumeration rule is:

Enumeration Rule 2 (SD) Given Si symmetrical subtrees of To with i =
1, . . . , q, 2 ≤ q ≤ 4, the trees generated from To are those obtained expanding
Sq thus skipping S1, . . . , Sq−1.

v r w

200

3000

2100

2100

Fig. 5 Symmetries

We observe that the enumeration rule 2 can be applied recursively to
all subtrees of Sq and to all non symmetrical subtrees of To. Note that the
choice of Sq instead of S1 is only motivated by implementation reasons (see
§4.1).

The use of RS and SD techniques guarantees the uniqueness of enumer-
ated trees. Enumeration rule 1 avoids multiple enumeration of trees from
different To while enumeration rule 2 avoids multiple enumeration of trees
from the same To.

4.1 Implementation details

We report only the main details concerning the implementation of algorithm
AHM. These observations can be extended to HPVK in a straightforward
manner considering the fact that this algorithm uses N -tuple codes, hence
it requires the use of simpler data structures.

In particular AHM makes use of the code tree data structure (CTree

for short) which is exemplified in Figure 6.

CTree is a rooted tree with root in r which is decomposed into levels
where a level i is the set of nodes v such that lr(v) = i.
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l (v)r

0

1

1 1

2

2 2

3

3

Levels

0

1
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3
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3 21010 10 0
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0

Fig. 6 A tree with the indication of lr(v) and the corresponding CTree

Starting from a pendant node whose code is 0, the code of a node v
is obtained concatenating the number of subtrees incident in v with the
subtree codes in lexicographical order.

CTree drives the code computation of a new enumerated tree and the
application of the enumeration rules 1 and 2.

First of all, we observe that the subtree code C = c1c2 . . . cl can be easily
manipulated: if a pendant node is added to the root of subtree the new code
is C ′ = (c1 + 1)c2 . . . cl0; otherwise, if a pendant node is deleted from the
root, the code is C ′ = (c1 − 1)c2 . . . cl−1.

Figure 7 shows how the CTree of To can be used to compute a new code
Td: first we compute the new code of the right subtree where a pendant node
is added (200); then the codes at same level are lexicographically ordered
(200, 110) to correctly compose the subtree code at the upper level (2 200
110); these operations (ordering and composing steps) are repeated until
level 0 is reached, that is until the new code Td is computed.

2 110 10

110 10

010

0

adds a node

0 0

200110

10

0

compute subtree
code

??

110

10

0

0 0

200

ordering and

2 200 110

composing steps

Fig. 7 New code computation

The same procedure can be utilized to compute To code from Td. The
new subtree code is obtained by deleting a pendant node, instead of adding
it. Then, the ordering and composing steps are repeated in the same way
as before until level 0 is reached.
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The enumeration rule 2 can be implemented by performing a breadth
first search (BFS) on CTree : finding a symmetry is equivalent to finding
two nodes at the same level with the same code.

The enumeration rule 1 can be implemented by generating all possible
To codes and checking if the lexicographically largest one corresponds to
the code of the current To. Note that the enumeration rule 2 can be also
used to compute To trees.

Procedure GenSetD (see Figure 8) taking as input a tree To, generates
the set D(To) by applying the enumeration rules 1 and 2. In particular, the
CTree corresponding to the input tree is generated and the codes belonging
to level 1 are inserted into a queue Q. Following the BFS search, at each
iteration a code u is extracted from Q; if u is equal to the first code in Q
then it is skipped (enumeration rule 2); otherwise, if the degree constraint
holds (adj(u) ≤ 3), the procedure tries to add a pendant node to u and
recomputes the code corresponding to the new tree, if the enumeration rule
1 applies. The pseudo-code of GenSetD is depicted in Figure 8.

Procedure GenSetD (T, D) {
D, O : sets of trees; Q : queue;
MakeCTreeOf(T ); D := ∅; Q := {v : v = succ(root(T ))};
while Q 6= ∅ {

u = GetFirst(Q); Q := Q \ {u};
if ( code(u) 6= code(next(u)) ) { {enum. rule 2}

Q := Q ∪ {v : v = succ(u)};
if ( adj(u) ≤ 3 ) {

t := NewCode(u, l(u));
m := ComputeMax(O(t));
if ( T = m ) D := D ∪ {t}; {enum. rule 1}

};
};

};
return(D);

}.

Fig. 8 Procedure GenSetD

The procedure OneToOneEnumeration (see Figure 9) generates the
set of all n-trees by calling procedure GenSetD. The pseudo-code reported
is amenable to both AHM and HPVK algorithms.

5 Complexity of algorithms

In this section, we compare the computational complexities of AHM, HPVK
and KP algorithms. The complexity of TNKMS is not reported since the
algorithm structure is not described precisely in the original paper ([12]).
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Procedure OneToOneEnumeration (n) {
Trees[1..n] : sets of trees;
Trees[1] := {10}; NofTrees[1] := 1;
Trees[2..n] := ∅; NofTrees[2..n] := 0; node := 2;
while ( node ≤ n ) {

while ( Trees[node− 1] 6= ∅ {
t := GetAndDel(Trees[node− 1] );
GenSetD( t, Trees[node] );
NofTrees[node] := CardinalityOf(Trees[node]);

};
node := node + 1;
};
return( NofTrees[n], ElapsedT ime, Trees[n] );

}.

Fig. 9 AHM and HPVK algorithms

5.1 KP algorithm

The complexity of procedure KP depends on the number of combinations
(1) subject to Conditions 1-4. We recall that the problem of finding all pos-
sible combinations of t rooted trees with no more than k nodes is equivalent
to finding all possible combinations of t numbers less than or equal to k in
such a way that their sum equals n− 1.

Let Cc, Nt and Nq be respectively the cost of composing a new code,
the number of triplets verifying Condition 1 and the number of quadruplets
verifying both Conditions 2 and 3. Let Nc be the number of possible com-
binations of rooted trees associated with each triplet or quadruplet. Note
that Condition 4 holds only for one combination. The complexity of cycles
in KP (see Figure 4) is given by

O(k × Cc ×Nc ×Nt) (2)

for the generation of p-rooted trees, and

O(Cc ×Nc ×Nq) (3)

for the generation of n-trees. The proof of the following Lemma is straight-
forward.

Lemma 1 The number of triplets (a(x), b(y), c(z)) verifying condition 1
are O(n2). The number of quadruplets (a(x), b(y), c(z), d(w)) verifying both
conditions 2 and 3 are O(n3).

Let Kp be the cardinality of p-rooted set. The number of possible com-
binations of m p-rooted trees (p = 1, .., bn

2
c) is O(Hm) where H is the max-

imum cardinality of rooted trees sets used to generate the p-rooted set in
procedure Compose, that is H = max{Ka,Kb,Kc} with ax+by+cz = p−1
according to Condition 1. Note that the function Compose in KP generates
a new code by composing the subtree codes in lexicographical order in linear
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time. Therefore, Cc is O(n). According to (2) and (3), the rooted tree gen-
eration cycle is O(n4K3

bn
2
c) while the n-tree generation cycle is O(n4K4

bn
2
c).

Moreover, for even n, the generation of bicentroids is O(nK2
bn

2
c). Therefore,

we have

Theorem 2 Algorithm KP is O(n4K4
bn

2
c).

5.2 AHM and HPVK algorithms

AHM and HPVK have the same computational complexity since the only
difference between the two algorithms is that HPVK does not use the
CTree data structure to drive the implementation of the enumeration rules
1 and 2.

The complexity of AHM depends on the time required to compute the
code of a new enumerated tree Td (procedure NewCode) and to compute
To codes when the algorithm checks the enumeration rule 1 (procedure
ComputeMax). We show that this computation can be carried out in
linear time. As depicted in Figure 7, this computation consists of the subtree
code computation and the consequent ordering and composing steps.

The code of a modified subtree (i.e. obtained by adding or removing a
pendant node) is computed in constant time (see §4.1).

The ordering step consists of checking the lexicographical order of two
codes which can be carried out in linear time in the code length d. The
worst case arises when from a code we generate a complete CTree with L
levels. Let dj be the length of a subtree code at level j = 0, .., L, therefore
we have:

d0 = n, d1 =
n− 1

4
, dL = 0.

dj =
dj−1 − 1

3
, j = 2, . . . , L− 1,

In fact, by definition of CTree , d0 = n and dL = 0. Since the CTree is

complete, the root has 4 subtrees whose code lengths are equal to
n− 1

4
.

At level j ≥ 2, the length of the 3 subtree codes is
dj−1 − 1

3
. The number

of codes compared are 2 at level j = 2, . . . , L− 1, and 3 at level j = 1. Each
comparison requires O(di) steps. Hence the overall number of steps is:

3d1 +

L−1
∑

j=2

2dj ≤ 3

L−1
∑

j=1

dj = 3

[

n− 1

4
+

n−1

4
− 1

3
+ . . .

]

≤ 3

[

n− 1

4
+

n− 1

4 3
+ . . .

]

≤ 3

L−1
∑

j=1

n− 1

4 3j
=

3

4
(n− 1)

L−1
∑

j=1

1

3j

≤
3

4
(n− 1)

∞
∑

j=1

1

3j
=

3

4
(n− 1)

1

2
=

3

8
(n− 1)
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which is O(n).
Finally, the concatenation of two or more subtree codes is O(n). There-

fore, the computation of a new code after adding or deleting a pendant node
is O(n).

Procedure GenSetD (Figure 8) visits once all n−1 nodes of CTree in
the worst case. For each one, the application of enumeration rule 2 is O(n),
the encoding of a new enumerated tree Td is O(n) and the application
of enumeration rule 1 is O(n2): in fact, the codes of all n − 1 possible
To = GT (Td) are obtained in O(n). This means that GenSetD is O(n3).

By consequence, the overall complexity of procedure OneToOneEnu-
meration (Figure 9) is given by

n−1
∑

i=1

i3Si−1.

where Si is the number of i-trees. Since the following inequalities hold

n
∑

i=1

i3Si ≤
n
∑

i=1

i3Sn ≤ Sn

n
∑

i=1

i3 = Sn

(

n
∑

i=1

i

)2

= Sn

n2(n + 1)2

4
,

we have theorem 3.

Theorem 3 Algorithms AHM and HPVK are O(n4Sn).

¦

Table 1 Computational complexities of reported algorithms

Enumeration algorithms

KP HPVK AHM TNKMS
O(n4 K4

b n
2
c) O(n4 Sn) O(n4 Sn) - -

Table 1 summarizes the complexity of algorithms. The reported com-
plexities depend on the number of carbonium atoms n, that is the size of
each generated tree, and the size of the set of trees (rooted tree in the case
of KP algorithm) used by the algorithms to generate the required class of
alkanes. For example, for n = 20, K10 = 879 while S20 = 251731 (see table
2). Looking at these results, it is not possible to select a priori which is the
best algorithm since it is difficult to clearly evaluate any single contribution
to the complexity functions. Therefore, running time comparisons are also
required.

6 Running time comparisons

This section reports some computational results based on our running time
experiences made on Silicon Graphics Indingo 4000, processor Risc IP20 100
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MHz, 48 Mbytes of main memory. AHM, HPVK and KP are implemented
in Pascal while TNKMS in Fortran77, as reported in [12].

Figure 10 plots the running times performances obtained by comparing
the use of Reverse Search and Symmetry Detection techniques and the use
of a list of codes in order to avoid multiple generations. The joint use of these
techniques outperforms the use of an unordered list. Moreover, they allow
to save memory since they do not require storing all generated codes. There-
fore, in principle, these techniques make it possible to enumerate classes of
alkanes with larger numbers of carbonium atoms.

Table 2 reports the running times of the algorithms presented in the
course of the paper. TNKMS appears the slowest algorithm to generate
the alkane molecular family. This might be due to the lack of rules avoiding
multiple enumerations of trees. AHM and HPVK have similar running times
and their gaps depend on the different computer implementations. KP is
surprisingly the best algorithm: with n = 21, KP is about 4, 5 times faster
than HPVK and AHM and about 1320 times faster than TNKMS.

The main reason seems to be the fact that KP builds the alkane molec-
ular family employing only bn

2
c-rooted trees. On the contrary, the other

algorithms need to generate all the alkane molecular families up to n − 1.
In other words, KP generates 879 rooted trees to enumerate all the 366319
20-trees while AHM, HPVK and TNKMS need 251731 trees.

One may observe that contrary to the KP algorithm, AHM, HPVK and
TNKMS algorithms give as output not only the set of all trees of a given
cardinality n, but they also give as a byproduct all the sets of trees of car-
dinality m with m < n. However, in order to achieve the same result also
utilizing algorithm KP we may run it once for each possible value of m. The
overall running time would be the sum of running times of each run. It is
clear from table 2 that even in this case KP proves to be much faster than
the other algorithms. Moreover, an optimized algorithm computes once the
rooted trees needed to enumerate all alkane families saving further compu-
tational time.
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Table 2 KP, HPVK, AHM and TNKMS running time

n Sn HPVK AHM TNKMS KP
∑b n

2
c

p=1
Kp

16 10359 0” 0” 45” 0” 161
17 24894 2” 2” 2’43” 0” 161
18 60523 6” 7” 9’50” 2” 372
19 148284 14” 16” 35’44” 4” 372
20 366319 37” 42” 2h11’20” 15” 879
21 910726 1’38” 1’52” 8h04’39” 22” 879
22 2278658 4’17” 4’57” - - 1’34” 2117
23 5731580 11’11” 13’09” - - 2’25” 2117
24 14490245 29’22” 31’39” - - 10’18” 5174
25 36797588 1h18’43” 1h24’11” - - 15’58” 5174
26 93839412 3h33’50” 3h49’33” - - 1h06’44” 12813
27 240215803 9h09’35” 9h36’55” - - 1h46’25” 12813

In conclusion, KP appears the best algorithm to enumerate an alkane
molecular family with n carbonium atoms.

7 Conclusions

We have presented four different algorithms to enumerate the alkane molec-
ular family CnH2n+2 for any given n.

Reading the alkane enumeration literature, we have noted that remark-
able work on this topic has been done by researchers not deeply involved
with algorithmic aspects. They often avoid studying or reporting on the
computational complexity and the running times. For these reasons, we
reported a detailed complexity study.

One-to-one enumeration requires some rules which avoid duplications.
We have shown how Reverse Search and Symmetry Detection techniques
are useful to avoid multiple enumeration and to save memory allowing the
enumeration of larger families. Moreover, they speed up the running time of
the algorithms HPVK and AHM in comparison to TNKMS. Jordan’s The-
orem guarantees the uniqueness in the constructive enumeration algorithm.
As shown in section 6, KP is surprisingly the best algorithm.
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