
1

Efficient labelling algorithms for
the Maximum Non Crossing Matching Problem

by
Federico Malucelli1, Thomas Ottmann2, Daniele Pretolani1

Abstract: Consider a bipartite graph; letÕs suppose we draw the origin nodes and the destination nodes
arranged in two columns, and the edges as straight line segments. A non crossing matching is a subset of
edges such that no two of them intersect. Several algorithms for the problem of finding the non crossing
matching of maximum cardinality are proposed. Moreover an extension to weighted graphs is considered.
Keywords: Non Crossing Matching, VLSI layout, permutation, longest increasing subsequence.

1. Introduction
Consider a bipartite graph G=(O,D,E), with O and D origin and destination node sets
respectively (|O|=|D|=n), and E a set of edges (i,j), iÎO and jÎD (|E|=m). For each origin
node i let FS(i) be the list of edges incident in i. Suppose we draw the origin nodes and the
destination nodes arranged in two columns, and the edges as straight line segments between
origins and destinations. A non crossing matching is a subset of edges MÍE such that no two
edges of M intersect (including intersections at nodes). The Maximum Non Crossing
Matching (MNCM) is the problem of finding the non crossing matching of maximum
cardinality. Let p denote the cardinality of the MNCM. Problems arising in several fields can
be modelled as MNCM: for example the 3-Side Switch Box in VLSI design has been
presented in [2], where an O(n2) time algorithm is proposed. The MNCM problem can be
reduced to the one of finding the longest increasing subsequence in a permutation of size m.
An algorithm for this problem has been proposed by Fredman [1] and slightly improved by
Widmayer and Wong [7]; in our case this algorithm has complexity O(m+mlogp). In this
paper some labelling algorithms for the MNCM, which work directly on the bipartite graph,
will be proposed. The overall complexity is improved to O(mloglogn) or to O(m+min{np,
mlogp}). Finally the Maximum Weight Non Crossing Matching (MWNCM) will be
introduced.

2. The labelling algorithm
We identify both origin nodes and destination nodes with numbers in the set {1,2,É,n}; the
nodes are numbered in increasing order from the top to the bottom, hence two edges (i,j) and
(h,k) cross iff (i£h and j³k) or (i³h and j£k).
The algorithm is organized in two phases: a first phase during which labels are assigned to all
the edges of E; a second phase during which the edges of the MNCM are selected. The label
L(i,j) assigned to edge (i,j) corresponds to the cardinality of the partial MNCM that includes
(i,j) and lies entirely above it (i.e. it includes only edges (h,k) such that h<i and k<j). The value
of the maximum assigned label gives the cardinality of the MNCM for G, as can be easily
proved [2]. Once labels have been defined, the selection phase is trivial.

1Dipartimento di Informatica, Universit� di Pisa, Corso Italia 40, 56125 Pisa, Italy; e.mail carra@dipisa.di.unipi.it

2Institut f�r Informatik, Universit�t Freiburg, Rheinstr. 10-12, D-7800 Freiburg i. Br., Germany.

2

The labelling phase is the crucial part of the algorithm. This phase can be carried out scanning
the origin nodes from the top to the bottom, setting the label for each edge incident to the
current origin node. We assign a label LN(j) to each destination node j; all node labels are
initially set to 0. During each iteration of the labelling algorithm given below some node labels
will be increased. After completion of the labelling phase LN(j) is the maximum label assigned
to an edge incident to j. The labelling algorithm can be described as follows:
{Step 0} for each j Î D : LN(j) : = 0;

for i := 1 to n do
{Step 1} for each edge e = (i,j) Î FS(i) : L(e) := 1 + max { LN(k) : k < j };
{Step 2} for each edge e = (i,j) Î FS(i): LN(j) := max { LN(j) , L(e) };

The selection of the edges in an MNCM can be carried out as follows:
let k = max{L(e), eÎE};
select an edge ek with label k;
while k > 1 do

select an edge ek-1 with label k-1 and not intersecting the edge ek;
k:=k-1;

If the edges are arranged in a suitable data structure (i.e. a bucket list) then, since each edge is
considered only once, the selection phase takes O(m) time. It is easy to see that this phase
gives a non crossing matching of maximum cardinality.

3. Implementation and complexity.
In our algorithm the techniques described in [1], [7] are modified to work on general bipartite
graphs. Instead of maintaining the node label LN(j) for each destination node j during each
iteration of the loop in the labelling algorithm it is sufficient to mantain an array P which gives,
for each node label k assigned so far, the topmost destination j such that LN(j)=k. Let K denote
the maximum currently assigned node label. Then we can replace {Step 0} in the labelling
algorithm by setting K:= 0 and P(0):= 0. Furthermore, in {Step 1} the assignment of edge
label L(e) to edge e can be done referring to the array P instead of referring to the node labels,
since it is easy to see that

max { LN(k): k < j }Ê=Êmax { k : P(k) < j , 0£k£K}.
Finally, we can directly update P and K and, therefore, replace {Step 2} of the labelling
algorithm as follows:
{Step 2} for each edge e = (i,j) Î FS(i):

k := L(e);
if k£K then P(k) := min{ P(k), j}

else K := K + 1;Ê P(K) := j;

The complexity of our algorithm depends on the implementation of the max operation in {Step
1}. Note that updating K and the array P in {Step 2} takes O(m) overall time.
Further on we assume that the edges in each FS(i) are sorted with respect to the index of
destination node. The FS(i) lists can be sorted in O(m) time as follows: first, collect all edges
with the same destination node j in a list Lj, 1£ j £ n; then scan through the non empty lists in
the sequence L1,É,Ln and append each edge (i,j) to FS(i).

3

A simple implementation of {Step 1} requires the scanning of both FS(i) and P, in the same
order as in a merge operation between two lists; in this case the labelling of FS(i) takes
O(½FS(i)½+K) time, and the overall complexity is O(m+np).
For sparse graphs (i.e. when ½FS(i)½<<K), we can perform a binary search for each edge (i,j)
instead of scanning the whole sequence P, thus obtaining an O(½FS(i)½log(K)) time bound for
{Step 1}, and an overall O(mlogp) complexity.
Remark 3.1 For each origin node i we can choose between the scanning of P and the
binary search, depending on the current values of K and ½FS(i)½; the resulting complexity is
O(m+min{np, mlogp}).
Remark 3.2 Consider the class of convex bipartite graphs, that is graphs in which for each
origin i FS(i) contains exactly the edges (i,j) with j in an interval [3]; on this class the problem
can be solved in O(m+(n-p)logp) time implementing {Step 1} as follows:
- find the label k for the edge (i,j)ÎFS(i) with maximum index j; note that we can

check in constant time if j>P(K), and in this case we have k = K+1; hence,
the binary search is not necessary for the p edges (i,j) that allow to increase K;

-Ê scan P, in decreasing order, starting from P(k); it is easy to see that at most ½FS(i)½
elements of P must be scanned.

Remark 3.3 We can label each edge in less than logarithmic time using a bounded
dictionary [5] or the priority queue defined in [6]. These data structures allow to perform set-
manipulation operations and queries on a subset S of the integers in the interval [1..N] in
O(log logN) time and O(N) space: in our case the set S contains the values P(1),É,P(K), and
thus N=n. For each edge (i,j) the max operation and the updating of P and S can be carried out
in O(loglogn) time; the overall complexity of the algorithm becomes O(mloglogn), with an
O(m) space bound.

4. The weighted problem
Let wij be a real number associated to each edge (i,j)ÎE. The Maximum Weight Non Crossing
Matching (MWNCM) is defined as the non crossing matching M with the maximum sum of
wij over (i,j)ÎM. Note that the MWNCM is not necessarily the MNCM, moreover if there are
some negative wij then M may even be non maximal.
The basic structure of the algorithm remains unchanged. The meaning of the labels becomes
the following: L(i,j) is the weight of the partial MWNCM which includes edge (i,j) and lies
entirely above (i,j). Consequently the labelling operation of {Step 1} becomes:

L(i,j):= wij + max {LN(k): k<j}.
In order to compute max {LN(k): k<j} efficiently we use a simplified version of the priority
search tree (PST) [4]. A PST is a structure for storing sets of points in a two-dimensional
space; here, we regard the pairs (j, LN(j)) as points in a 2-space. This structure allows to
perform insertion and deletion of pairs, and range query operations such as finding the pair
(x,y) with maximum y value and x belonging to a given interval. The time complexity of each of
these operations is O(logN), where N is the number of pairs contained in the structure. It is
easy to see that the max operation in {Step 1} of the labelling phase can be reduced to a range
query on the subset [1,É,j-1] of the destination nodes. Update operations in {Step 2} can be
carried out performing a deletion and a subsequent insertion into the PST. Since there will be
at most n pairs in the PST, the overall complexity of the algorithm is O(mlogn). The space
requirement for the PST is O(n), hence the space complexity of the algorithm remains

4

unchanged.

5. Conclusions
In this paper we proposed several algorithms for the Maximum Non Crossing Matching
problem. The main characteristic of all these algorithms is that the problem is directly
approached, as in [2], without reducing it to the permutation case. Comparing our algorithm to
the one presented in [2], it should be observed that for sufficiently sparse graphs (i.e.
m=O(np)) we obtain a O(np) worst case complexity, which is slightly better than O(n2).
Moreover, the space requirement is reduced from O(n2) to O(m). On the other hand remark
that, applying the Widmayer and Wong algorithm to the permutation corresponding to a dense
graph (i.e. m=O(n2)), the resulting complexity is O(n2logp), which is worse than O(n2).
Another stimulating open problem is the one of finding the Maximal NCM of minimum
weight, which seems to be more difficult than the MWNCM: it is possible to devise a trivial
O(m2) algorithm; the possibility to improve this complexity deserves further investigations.

Acknowledgements
We wish to thank the referees for their comments, and B. Nilsson for helpful discussions.

References
[1] M.L. Fredman, ÒOn Computing the Length of Longest Increasing SubsequencesÓ,

Discrete Mathematics, 11, 1, (1975), p. 29-35.
[2] Y. Kajitami and T. Takahashi, ÒThe non cross matching and applications to the 3-side

switch box routing in VLSI layout designÓ, Proc. International Symposium on Circuits
and Systems 1986, p 776-779.

[3] E. Lawler, ÒCombinatorial Optimization: Networks and MatroidsÓ, Holt, Rinehart and
Winston, (1976).

[4] E. M. McCreight, ÒPriority search treesÓ, Siam Journal on Computing, v. 14 (1985), n.
2, p 257, 276.

[5] K. Melhorn and S. N�her, ÒBounded Ordered Dictionaries in O(log log N) Time and
O(n) spaceÓ, Information Processing Letters 35 (1990), p. 183-189.

[6] P. van Emde Boas, ÒPreserving Order in a Forest in Less than Logarithmic Time and
Linear Space, Information Processing Letters v. 6, n. 3 (1977), p. 80-82.

[7] P. Widmayer and C.K. Wong, ÒAn Optimal Algorithm for the Maximum Alignment of
TerminalsÓ, Information Processing Letters 10 (1985), p. 75-82.

