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Shiftable Intervals
Federico Malucelli(*), Sara Nicoloso(**)

Abstract: Let a set of n fixed length intervals and a set of n (larger) windows,
in one-to-one correspondence with the intervals, be given, and assume that
each interval can be placed in any position within its window. If the position
of each interval has been fixed, the intersection graph of such set of intervals
is an interval graph. By varying the position of each interval in all possible
ways, we get a family of interval graphs. In the paper we define some
optimization problems related to the clique, stability, chromatic, clique cover
numbers and cardinality of the minimum dominating set of the interval
graphs in the family, mainly focussing on complexity aspects, bounds and
solution algorithms. Some problems are proved to be NP-hard, others are
solved in polynomial time on some particular classes of instances, which are
characterized in the paper. Many practical applications can be reduced to
these kind of problems, suggesting the use of Shiftable Intervals as a new
interesting modeling framework.

Keywords: Interval Graphs, Optimization problems, Complexity

1.ÊIntroduction and general definitions

Interval graphs are a well studied modelling framework (Gilmore and Hoffman 1964,
Golumbic 1980). Many practical applications can be naturally approached by using interval
graphs; among the others, we recall applications in the field of biology, chemistry,
archeology, project management, and scheduling. In all such cases, the objects involved in
the problem are usually represented as fixed end intervals of a given axis (temperature,
time, É). A reasonable extension is to introduce a flexibility in the definition of the
intervals, that is, to allow each interval to move within a larger interval (window). By
varying the position of each interval in all possible ways within its window, we get a
family of interval graphs. In this paper we study this generalized modeling framework.
We shall define some optimization problems related to the clique, stability, chromatic,
clique cover numbers and cardinality of the minimum dominating set of the interval
graphs in the family, mainly focussing on complexity aspects, bounds and solution
algorithms.

Let T denote a set of n triples tiÊ=Ê<li,ri,li> of non-negative integer numbers satisfying
riÊÐÊliÊ³ÊliÊ>Ê0, i.e. TÊ=Ê{tiÊ=Ê<li,ri,li>ÊÎÊZ3

+: riÊÐÊliÊ³ÊliÊ>Ê0, for iÊ=Ê1,É,n}. The interval (li,ri],
open on the left, will be called window wi (li,ri will be called the left and right endpoint of the
window, respectively), and the value li will be called the length of the interval associated
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with window wi. Unless stated otherwise, all intervals and windows considered in the
paper are open on the left.

The set T can be thought of as a set of intervals open on the left and of prescribed
length, each of which is free to move within the corresponding window. In other words,
both endpoints of the ith interval have to lay within the range (li,ri]. The distance ji
between the left endpoint of the ith interval and the left endpoint li, of the corresponding
window wi=(li,ri] can be used for describing the exact position of the interval, and
precisely, li+ji  (li+ji+li, respectively) represents the coordinate of the left (right, resp.)
endpoint of interval i (notice that li+ji£li+ji+li, as li>0). In what follows, the notation
<ti,ji> will represent the ith interval placed according to ji, that is, it will represent the
interval (li+ji,Êli+ji+li].

The vector jÊ=Ê[j1,Êj2,É,Êjn] of all ji's is called placement. A placement jÊis feasible if
liÊ£Êli+ji and li+ji+li,Ê£Êri, that is if jiÎ[0,ÊriÐliÐli ] for all i (in the sequel, we shall deal
with feasible placements only). Since li,ri,liÊÎÊZ+, without loss of generality we shall limit
ourselves to considering integer valued j's only. Note that every ji may assume (at least)
one out of a certain number of consecutive nonÐnegative integers (the first one being
zero).

The interval model M(j)Ê=Ê{<t1,j1>, <t2,j2>,É, <tn,jn>} is the set of all intervals placed
according to j. The intersection graph G(j) of this set of intervals of the real line is an
interval graph (we say that two intervals (a,b] and (a',b'] intersect when a'Ê<ÊbÊ£Êb').

The set of all interval graphs G(j) obtained by varying j in all possible (feasible) ways
is called the family FT associated with the given triple set T. Notice that different values of
the placement vector j, hence different interval models, may give rise to the same interval
graph, and notice also that for any graph GÎFT there exists a feasible placement j such
that G(j) is isomorphic to G. Notice also that both M(j) and FT are non-empty sets, since
j=0 is a placement which is always feasible.

A minimization (maximization, respectively) problem on a triple set T is defined as
follows:

Problem Min f(T) (Max f(T), respectively):

Given: a triple set TÊºÊ{ti=<li,ri,li>ÊÎÊZ3+: riÐliÊ³ÊliÊ>Ê0, for i=1,É,n}
and a function f:ÊFT®Z+,

Find: a graph GÎFT,
Such That: f(G) is minimum (maximum, resp.) over all graphs in FT.

In other words, an optimization problem on T consists of identifying an interval graph
GÎFT on which f(G) attains its optimum value. f(T)min (f(T)max, respectively) will denote
the optimum value resulting from a mimimization (maximization) problem on T.
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In this paper we shall consider the minimization and maximization problems on T arising
when f is a function which associates to a graph GÎFT some classical measures on graphs,
and precisely the clique number w(G) (i.e. the size of a maximum sized complete subgraph
of G), the chromatic number c(G) (i.e. the size of a minimum sized node coloring of G ),
the stability number a(G) (i.e. the size of a maximum sized independent set of G), the
clique cover number k(G) (i.e. the size of a minimum sized covering of G by complete
subgraphs), and the size of the minimum dominating set d(G). Notice that since, in this
paper, we define f to be an optimization function itself, an optimization problem on T, in
practice, is either one of the following four types of problem: minÐmin, minÐmax, maxÐ
min, maxÐmax (for example, problem MinÊw(T) is a minÐmax type problem, in fact a
graph GÎFT has to be found, with a minimum sized maximum complete subgraph).

From time to time we shall also refer to the corresponding decision version of the
optimization problems described above. Its formal statement is the following:

Problem Min f(T) (Max f(T), respectively) in decision form:

Given: a triple set TÊºÊ{ti=<li,ri,li>ÊÎÊZ3+: riÐliÊ³ÊliÊ>Ê0, for i=1,É,n}, a
function f:ÊFT®Z+, and a positive integer h,

Find: a graph GÎFT,
Such That: f(G)Ê£Êh (f(G)Ê³Êh, resp.).

As discussed above, for any graph GÎFT there exists a feasible placement j such that G(j)
is isomorphic to G. Thus, in all problem statements we can replace ÒFind a graph GÎFT,
Such That f(G)ÉÓ with ÒFind a feasible placement jÊÎÊZn+, Such That f(G(j))ÉÓ.

For some of the defined problems we shall devise polynomial algorithms. Other ones will
be proved to be NP-hard, and we shall prove some lower and upper bounds for them.
Finally, we shall try to characterize sets of triples for which the problems that are difficult
in the general case, can be solved in polynomial time. It is worth noticing that the
complexity of solving the optimization problems defined above lays in the fact that we
have to identify an interval graph of the family which achieves the optimum over the
chosen objective function, and not on the complexity of evaluating such function on an
interval graph; in fact, computing w(G), c(G), a(G), k(G), d(G) on a given interval graph G
with n nodes takes O(n logn) time (Gupta et al. 1982, Farber 1982).

Many practical applications can be reduced to these kinds of problems on Shiftable
Intervals. Take as an example some problems in the context of scheduling where jobs with
ready and due dates are to be scheduled on a set of identical machines: the ready and due
dates of a job can be seen as the left and right endpoint of a window, respectively, and its
processing time as the interval length associated to the same window.
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The paper is organized as follows. In Section 2 some definitions of particular sets of
triples and some basic properties are introduced. Then it considers the problems related to
the clique and the chromatic numbers (Section 3), the stability and the clique cover
numbers (Section 4), and the cardinality of a dominating set (Section 5). A final section
contains some concluding remarks and some directions for future work.

2. Definitions and basic properties

Let a set TÊºÊ{ti=<li,ri,li>ÊÎÊZ3+  : riÐliÊ³ÊliÊ>Ê0, for iÊ=Ê1,É,n} of triples be given. Consider
the intersection graph HTÊ=Ê(V,E) of the set of windows {(li,ri]: i=1,É,n} corresponding to
triples in T where the nodes of V are in oneÐtoÐone correspondence with the windows,
and an edge connects two nodes u, v if and only if the corresponding windows intersect.

Consider any two intersecting windows wu=(lu,ru] and wv=(lv,rv] corresponding to
triples tu,tvÎT, and let (u,v) be the corresponding edge of HT. Among the edges of HT, we
distinguish two types:

Definition 2.1: An edge (u ,v)ÎE  is strong if and only if lu+luÊ³ÊrvÐlv holds when
luÊ£ÊlvÊ£ÊruÊ£Êrv, or both lu+luÊ³ÊrvÐlv  and lv+lvÊ³ÊruÐlu hold when luÊ£ÊlvÊ<ÊrvÊ£Êru. An
edge is weak in all other cases.

The set of all strong edges of HT will be denoted by ES, the set of all weak edges will be
denoted by EW. ES and EW are a partition of E, that is ESÈEW=E and ESÇEW=¿. It happens
that all edges of HT are strong, for example, when only one feasible placement exists,
namely j=0 (that is liÊ=ÊriÐli for all tiÎT).

A strong edge is contained in all interval graphs G=(V,EG) of the family FT, since the
corresponding intervals intersect whatever their (feasible) placement is. Thus ESÊ=Ê Ç

GÎFT
 EG.

On the contrary, a graph of the family FT contains a weak edge of HT if the corresponding
intervals are ÒsuitablyÓ placed within their window. Clearly, given a weak edge (u,v) of
HT, there always exist two distinct graphs in the family, one which does contain the weak
edge (u,v), and the other one which does not.

From what above, it follows that the family FT has a positive finite cardinality, in fact
1Ê£Ê|FT|Ê£Ê2|EW|Ê<Ê2n2. Let rmaxÊ=ÊmaxÊ{ri, i=1,É,n} and lminÊ=ÊminÊ{li, i=1,É,n}. Since every
ji may assume one out of riÐliÐli+1 integer consecutive nonÐnegative values, we get
O((rmaxÐlmin)n) interval models, which are mapped onto the set FT whose cardinality does
not exceed 2n2. Notice that if HT does not contain weak edges, one has|FT|Ê=Ê1, and the
unique graph GÎFT is exacty HT.

Moreover:

Observation 2.2: Any interval graph G=(V,EG)ÎFT is a partial subgraph of HT=(V,E), in
the sense that ESÊÍÊEGÊÍÊE=ESÈEW.
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On the other hand, not all partial subgraphs G'=(V,EG') of HT which are interval graphs
belong to FT, even if they verify ESÊÍÊEG'ÊÍÊE=ESÈEW. In Figure 1 an example is discussed.

Definition 2.3: A triple tv is overlapping , and so is the corresponding vertex, if
rvÐlvÊ<Ê2lv. Triples and vertices are nonÐoverlapping in all other cases.

Consider a triple tv. Notations <tv,0> and <tv,rvÐlvÐlv> represent the interval of the triple
tv in its leftmost and rightmost placement, respectively. The corresponding vertex vÎV is
called overlapping if the two intervals <tv,0> and <tv,rvÐlvÐlv> do have nonÐempty
intersection. In this case there exists a set of points of the real line which is contained into
both of them, an precisely (rvÐlv,lv+lv]. On the contrary, vertex v is nonÐoverlapping
when the two intervals <tv,0> and <tv,rvÐlvÐlv> do have empty intersection. In this case
there exists a set of points of (lv+lv,rvÐlv] the real line which does not intersect the
intervals  <tv,0> and <tv,rvÐlvÐlv>.

The set VO of all overlapping vertices and the set VN of all nonÐoverlapping ones are a
partition of the vertex set V of HT, in the sense that VOÈVN=V and VOÇVN=¿.

Lemma 2.4: No strong edge connects two nonÐoverlapping vertices.

Proof: Consider two nonÐoverlapping vertices u,v, and let cu=
ruÐlu

2 , and cv=
rvÐlv

2  be the

central coordinate of the corresponding windows. Assume, without loss of generality, that
cu£cv. We claim that there exist placements ju, jv such that the intervals <tu,ju>, <tv,jv>
do not intersect. In fact, since, by hypothesis, both vertices are nonÐoverlapping, interval
u placed in its leftmost position (i.e., <tu,0> = (lu,lu+lu]) lays completely on the left of cu,
and interval v placed in its rightmost position (i.e., <tu,rvÐlvÐlv> = (rvÐlvrv]) lays
completely on the right of cv That is, lu+luÊ£Êcu and cvÊ£ÊrvÐlv, and the theorem is proved.

❏

Theorem 2.5: Let v be a nonÐoverlapping vertex, and let AdjS(v) denote the set of all
vertices connected to v by a strong edge. Then all vertices in AdjS(v) are overlapping and
are pairwise connected by strong edges.

Proof: Consider any two vertices x,yÊÎÊAdjS(v). Since edges (x,v), (y,v) are strong, both x
and y are overlapping, in light of Lemma 2.4. Moreover, whatever jx,Êjy, and jv are,
intervals <tx,jx> and <ty,jy> intersect interval <tv,jv>, by definition; that is both
inequalities raÐlaÊ£Êlv+lv and rvÐlv£ la+la must hold for a=x ,y . Since v  is a nonÐ
overlapping vertex, lv+lvÊ<ÊrvÐlv. The theorem follows by considering that (lv+lv,rvÐ
lv]ÊÍÊ(lx+jx,lx+jx+lx] and (lv+lv,rvÐlv]ÊÍÊ(ly+jy,ly+jy+ly]. ❏

Notice that {vÊ}ÈÊAdjS(v)Êinduce a complete subgraph whose edges are all strong. Thus it is
a subgraph of HT, as well as of any GÎFT. From the above theorem we also derive that
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any complete subgraph of HT, with all strong edges, has at most one nonÐoverlapping
vertex.

Consider the subgraph A=(V,ES) of HT defined on the whole set of vertices and on the
set ES of all strong edges, only, and the subgraph HT(VO) induced in HT by the set VO of
all nonÐoverappig vertices only. We notice that HT(VO) is a subgraph of A, and that
HT(VO) is an interval graph, while A is not, generally speaking. Let us consider the
following example. Be TÊ=Ê{t1=<0,10,8>, t2=<3,28,5>, t3=<2,11,3>, t4=<6,9,2>, t5=<12,18,3>}
(see Fig. 1 and 2).

0 2 5 63 129 10 2818 É

1
2

4 5
É

3

Figure 1ÊÐÊExample: the windows of T.

In Fig.2(a) the graph HT is drawn, where the black (white) vertices are overlapping (nonÐ
overlapping) and the thick (thin) edges are strong (weak)). We note that vertices 1 and 4
are overlapping, and edge (1,4) is the only strong edge. In Fig. 2(b), 2(c), 2(d) some
examples of partial subgraphs of HT defined on the whole set of nodes.

In Fig.2(b) a graph G of the family FT is drawn; it is an interval graph and it does
contain the only strong edge; a feasible placement j such that G(j) is isomorphic to G, is
the following j=(0,0,6,1,3); this is not the unique j  with such property, any other
j=(0,0,6,1,j5), with j5Î[0,3], gives rise to the graph in the figure.
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Figure 2ÊÐÊExample (continued).

In Fig. 2(c) a partial subgraph of HT is drawn, which is not interval, nor it contains the only
strong edge; for both reasons it can not belong to the family FT.

In Fig. 2(d) a partial subgraph of HT is drawn, which is an interval graph, and it also
contains the only strong edge; nevertheless it does not belong to FT because no feasible
placement exists which gives rise to this interval graph, as we are going to discuss. Denote
by G=(V,EG) the graph in the figure, where EG={(1,4), (2,3), (2,4), (2,5)} (recall that (1,4) is a
strong edge). Since (2,4)ÎEG and (1,2)ÏEG, that is, since interval <t2,j2> has to intersect
interval <t4,j4> and not interval <t1,j1>, it must be the case that j1=0, j2=5, and j4=1. But
now, there is no way of choosing j3 so that <t3,j3> intersects no interval but <t2,5>,
(reflecting the fact that edge (2,3) is the only edge incident on v3 in G). In particular we
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note that <t3,j3> intersects interval <t2,5> only if j3Î{4,5,6}. It is easy to verify that when
j3Î{4,5,6}, interval <t3,j3> happens to intersect also <t4,1>, and that when j3Î{4,5} it
intersects <t1,0>. This contradicts the fact that (3,4), (1,3)ÏEG, showing that GÏFT, and
proves that the presence/absence of a subset of weak edges in a graph does depend,
generally speaking, on the presence/absence of some other subset of weak edges.

This concept can be generalized even further. Let J be the family  of all partial
subgraphs of HT which are defined on the whole set of vertices, which contain all the
strong edges and any subset of weak edges (including also the empty one), and which are
interval graphs. It is the case that JÍFT, and we showed an example where JÌFT. This
means that the characterization of J, although quite restrictive, is not sufficient yet to
describe the only interval graphs G(j) corresponding to feasible j's, and that the problem
of recognizing if a graph GÎJ also belong to FT, that is if there exists a feasible j such G is
isomorphic to G(j), is still open. This allows us for concluding that neither the definition of
weak edge, neither considering all possible subsets of them are ÒcomplexÓ enough for
correctly describing all graphs in FT, even if we restrict our attention to the only subsets of
weak edges which, together with all the strong edges, give rise to interval graphs.

From the above observations it follows that the problem of finding a particular GÎFT
is equivalent to that of finding a feasible placement which induces G.

Definition 2.6: A triple set T is orderable if (li,ri]¹(lj,rj] for i¹j, and no window exists which
is properly contained into another one.

In this case, the triples of T, hence the vertices of HT, can be numbered in such a way that
i<j if and only if li£lj  and ri£rj. In what follows we shall always assume that the triples of
an orderable triple set T are numbered according to this criterion, as well as the vertices of
the corresponding interval graph HT.

Notice that the intersection graph HT of the windows of an orderable triple set T is a
proper interval graph, and proper is also the set of windows. In fact, a set of intervals is
proper if no interval exists which is properly contained into another one, and an interval
graph G is proper if there exists a set of intervals none of which is properly contained into
another one, and whose intersection graph is G (a complete characterization of proper
interval graphs, also known as unit interval graphs can be found in (Golumbic 1980)).

3. The clique number and chromatic number problems

As noticed before, once a feasible placement j is given, the intersection relation among
the intervals in M(j) can be represented by means of a graph G(j)ÎFT, which clearly is an
interval graph, and the equality w(G(j))=c(G(j)) holds for it (Golumbic 1980). This implies
that the result of the optimization of w(T) immediately reflects onto the same optimization
of c(T).
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3.1 Minimization of w(T) and c(T)

The present Section is devoted to the problem MinÊw(G) of minimizing w(G) over all
GÎFT.

3.1.1 Computational complexity

Consider problem MinÊw(T) in decision form.

Theorem 3.1: Problem MinÊw(T) in decision form, where the given triple set T is such that
liÊ=Ê0 and riÊ=Êr for all iÊ=Ê1,É,n, is NP-complete in the strong sense.

Proof: The problem is easily seen to be in NP. The proof is by reduction from 3-PARTITION,
which is NPÐcomplete in the strong sense (Garey and Johnson 1979). Given 3m+1 positive
i n t e g e r s  b 1 , É , b 3 m , B  wi th Ê B

4 Ê<ÊbjÊ<ÊB2  for any j Ê = Ê 1 , É , 3 m
and å

j= 1,É,3m
ÊbjÊ=Êm B , find a partition of the bj's into m  subsets b 1,É,b m , such

that å
bjÎbi

ÊbjÊ=ÊB and |bi|Ê=Ê3 for any iÊ=Ê1,É,m. Now, given any instance of 3-PARTITION we

construct in polynomial time a corresponding instance of MinÊw(T) in decision form, as
follows: we set hÊ=Êm, and with each integer bj we associate a triple tjÊ=Ê<lj,rj,lj>, where lj =
0, rj = B and ljÊ=Êbj, for any jÊ=Ê1,É,3m.
Assume the resulting instance of MinÊw(T) in decision form is a YES-instance, and let j be a
feasible placement such that w(Gj))£h, it is to say, each unit range (j,j+1] for j=0,É,BÐ1 is
contained into no more than h intervals. Since the total length of the intervals amounts to
hB, and the horizontal dimension of the problem is bounded by B, we can conclude that
the above relations hold with the equality sign, namely, each unit range (j,j+1] for
j=0,É,BÐ1 is contained into exactly h intervals (that is, all complete subgraph of G(j) are
maximal w.r.t. node inclusion and have size (exactly) h). The corresponding YESÐsolution
for 3ÐPARTITION is obtained this way. Let L be the set of the h intervals whose left
endpoint has value zero, let R be the set of the h intervals whose right endpoint has value
B, and let C be the set of the remaining h ones. Since any unit range (j,j+1] for j=0,É,BÐ1 is
contained into exactly h intervals, for any iÎC there exist exactly two intervals <ti',ji'>
with i'ÎL and <ti",ji"> with i"ÎR such that the left endpoint of <ti,ji> coincides with the
right endpoint of <ti',j i'>, and the right endpoint of <ti,j i> coincides with the left
endpoint of <ti",ji">, that is ji=li' and ji+li=ji" (in fact ji=0 for any iÎL and ji=BÐli for
any iÎR). Since, clearly, li'+li+li"=B for i=1,É,h, bi={bi',bi,bi"} for i=1,É,h is the desired
YESÐsolution for the given YESÐinstance of 3ÐPARTITION (h=m by construction).
Assume, on the contrary, that the resulting instance of MinÊw(T) in decision form is a NO-
instance, that is, no feasible placement j exists such that w(G(j))£h. For any feasible
placement j we have w(G(j))>h, that is some unit range happens to be contained into
more than h intervals. Since the total length of the intervals amounts to hB, we can
conclude that some other unit range happen to be contained into less than h intervals. In
this case we claim that no way exists of partitioning the set of intervals into h subsets of
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three mutually non overlapping elements each, because not all the just required
constraints can be satisfied at once. In fact, consider, for example, any integer jÎ[0,BÐ1]
such that the unit range (j,j+1] is contained into h'>h intervals. Clearly, in order to have
subsets of non overlapping intervals, each one of the h' intervals has to be assigned a
different subset, therefore we will have more than h subsets, contradicting one constraint.
On the other hand, from the instance data, we immediately derive that neither all such
subsets will have 3 elements, nor the sum of the length of the intervals assigned to each of
them amounts to B, proving the theorem. ❏

The following corollary is a trivial consequence of the previous theorem.

Corollary 3.2: Given an arbitrary triple set T, the optimization version of problems
MinÊw(T) and MinÊc(T) are NP-hard in a strong sense.

3.1.2 Polynomially solvable cases

Even though problem MinÊw(T) in optimization form has just been proved to be NP-hard
on arbitrary triple sets, there are instances whose particular structure allows for finding an
optimum solution in polynomial time.

Let us start by considering the decision version of problem MinÊw(T). Algorithm mM-C
(min Max Clique) described below outputs a feasible solution, if any, to instances defined
on orderable triple sets T (triples are numbered by nonÐdecreasing left endpoints) such
that the sequence of values riÐli, i=1,É,n, is nonÐdecreasing (that is riÐliÊ³ÊriÐ1ÐliÐ1, for
i=2,É,n). Let W be a set of intervals, open on the left; throughout the algorithm, ch(W) will
denote the largest coordinate contained into exactly h intervals of W (ch(W)Ê=Ê0 if WÊ=Ê¿ or
no coordinate exists which belongs to exactly h intervals of W) (see Fig. 3).

c   (J)3

Fig. 3ÊÑÊc3(W), where W is the depicted set of intervals open on the left

Algorithm mM-C;
Input: an orderable triple set TÊ=Ê{t1,t2,É,tn} such that riÐliÊ³ÊriÐ1ÐliÐ1, for i=2,É,n,

and a nonÐnegative integer h;
Output: a feasible placement j such that w(G(j))Ê£Êh;

Begin
For iÊ=Ê1,É,n Do

jiÊ:= undefined;
Let W Ê:=Ê¿;
For iÊ=Ê1,É,n Do

Begin
If ch(W )Ê>ÊriÊÐÊl i
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Then Return(NO) and Stop
Else Begin

j iÊ=ÊmaxÊ{0, ch(W )ÊÐÊli} ;
W Ê:=ÊW ÊÈ Ê{(ti,j i)};

 End;
End;

Return(YES);
End.

Theorem 3.3: Algorithm mM-C correctly solves problem MinÊw(T) in decision form on
orderable triple sets TÊ=Ê{t1,t2,É,tn} such that riÐliÊ³ÊriÐ1ÐliÐ1, for i=2,É,n.

Proof: The correctness of the algorithm is obtained proving the following two facts: i) the
clique number of the intersection graph of the set of intervals placed according to
Algorithm mMÐC does not exceed h, and ii) the algorithm returns NO if and only if the
given SIG is a NOÐinstance.
The first claim is immediate: in fact the algorithm stops as soon as the distance between
the current ch(.) and the right endpoint of the window under consideration is smaller than
the corresponding interval length.
The ÒifÓÐpart of the second claim follows from the fact that no feasible placement exists
for the given instance.
Let us prove the Òonly ifÓ part of the second claim. Assume, by contradiction, that the
given instance of problem MinÊw(T) in decision form is a YESÐinstance. Let s+1 be the last
interval considered by the algorithm when it happens to return NO, that is iÊ=Ês+1,
WÊºÊ{<t1,j1>,É,<ts,js>}, and, of course, ch(W)Ê>Êrs+1ÊÐÊls+1. Since the given one is assumed
to be a YES-instance, there exists a feasible placement ~j such that interval s+1 happens to
belong to a clique of cardinality not larger than h. We shall prove that no such placement
~j exists, contradicting the hypothesis.
Since the given triple set T is orderable and riÐli, for i=1,Én, is a sequence of nonÐ
decreasing values, we are allowed to limit ourselves to modifying the current placement j
of intervals 1 through s+1 in order to determine the first s+1 components of ~j. Let J be the
set of the indices of the intervals which, placed according to j, contain coordinate ch(W),
that is JÊ=Ê{a£s, laÊ+jaÊ<Êch(W)£ÊlaÊ+ja+la}. In order to place interval s+1 so that the clique
number of the resulting interval graph does not exceed h, we shall try to shift some
interval jÎJ. Three cases arise:
a) no interval jÎJ exists which can be shifted (neither rightward nor leftwards) so as to lay

fully within its window and completely to the right of ch(W), or completely to the left
of the left endpoint of interval s+1 in its rightmost placement; that is, no feasible
placement j'j exists so that lj+j'jÊ³Êch(W) or lj+j'j+ljÊ£Êrs+1Ðls+1;

b) there exists an interval jÎJ which can be shifted rightwards so as to lay fully within its
window and completely to the right of ch(W); that is, there exists a feasible placement
j'jÊ>Êjj such that ljÊ+Êj'jÊ³Êch(W);
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c) there exists an interval jÎJ which can be shifted leftwards so as to lay fully within its
window and completely to the left of the left endpoint of interval s+1 in its rightmost
placement; that is, there exists a feasible placement 0Ê£Êj 'j < Ê j j such that
ljÊ+Êj'jÊ+ÊljÊ£Êrs+1ÊÐÊls+1.

Assume case a) applies. Then the given one is a NOÐinstance, and in fact no feasible
placement exists such that the number of intervals crossing coordinate ch(W) is smaller
than h+1.
Assume case b) applies. Since ch(W)Ê£Êlj+j'j £ÊrjÐlj, we have that ch(W)ÐljÊ£Êj'j £ÊrjÐljÐlj. On
the other hand, since the given triple set T verifies riÐliÊ³ÊriÐ1ÐliÐ1, for i=2,É,n, then rjÐ
ljÊ³Êch(W) implies that rs+1Ðls+1Ê³Êch(W). This contradicts the stopping condition of the
algorithm, and shows that ~js+1Ê=Êch(W)ÊÐÊls+1 is a feasible placement for interval s+1 which
does not increase over h the number of mutually intersecting intervals.
Assume case c) applies. Because of the algorithm behavior, if we shift leftwards an
interval, we have to shift rightwards another one, in order not to increase over h the
number of mutually intersecting intervals on the left of ch(W). This means that we have to
find an interval with index i<j which has to be moved rightwards in order to allow the
leftwards shifting of j. Let W'ÊºÊ{<t1,j1> ,É, <tjÐ1jjÐ1>} and let J' be the set of the indices of
all the intervals p which intersect coordinate ch(W'), with p<j. The same kind of reasoning
seen above on the possible shifting of an interval can be iteratively applied, until case a)
applies (which is always the case, for example when ch(W')Ê>Ê0 for the first time during the
execution of the algorithm), which ends the proof. Notice that ch(W') is always greater
than 0, otherwise case a) would apply. ❏

The computational complexity of algorithm mM-C is O(n) if we assume that the windows
are already sorted.

The optimization version of problem MinÊw(T) can be solved by applying Algorithm
mM-C to a sequence of problems with different values of k. A good way of operating
consists of applying a dichotomic search on the values of k, as lower and upper bounds are
known for it. Namely, one can apply a dichotomic search for k in the range [1,w(HT)] since
1Ê£ÊminÊw(T)Ê£ÊmaxÊw(T)Ê£Êw(HT)Ê£Ên. The number of steps of the dichotomic search
amounts to O(logÊw(HT)) which is bounded from above by O(logÊn). This finally gives an
O(nÊlogÊn) time algorithm to solve the optimization version of problem Min w(T) on
orderable triple sets which verify riÐliÊ³ÊriÐ1ÐliÐ1, for i=2,É,n.

3.1.3 Lower and upper bounds

Let A=(V,ES) be the subgraph of HT defined on the whole set of vertices and on the set ES

of all strong edges, only.

Theorem 3.4: w(A)Ê£Êw(T)minÊ£Êw(HT).
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Proof: The first inequality follows immediately considering that, by definition, A is a
subgraph of any graph GÎFT; the second one, by considering that w(G)Ê£Êw(HT) for any
GÎFT, as every G is a subgraph of HT ❏

We now describe how to compute w(A) (recall that A is not an interval graph, generally
speaking). Since, by Theorem 2.5, any complete subgraph with all strong edges contains at
most one nonÐoverlapping vertex, we can reason as follows. We compute |{v}ÈAdjS(v)|
for each nonÐoverlapping vertex v. Next we consider the interval subgraph A' induced in
A  by the vertex set VO\( È

vÎVN
ÊAdjS(v)), and compute w(A') (Gupta et al. 1982). It results

w(A)Ê=Êmax {w(A'),Êmax
vÎVN

Ê{|{v}ÈAdjS(v)|}}.

3.2 Maximization of w(T) and c(T)

In this section we shall deal with the problem of maximizing w(G) over the set of all
graphs GÎFT. Unlike the problem MinÊw(T), problem MaxÊw(T) on arbitrary triple sets can
be solved quite easily, both in decision and in optimization form.

Clearly, w(G)Ê£Êw(HT) for any GÎFT, as every G is a subgraph of HT. We shall show in a
while that there always exists a graph G of the family whose clique number equals the
clique number of HT, that is maxÊ{w(G),ÊGÎFT}Ê=Êw(HT). The placement vector j which
gives rise to a graph with such property is obtained this way: be x any coordinate
belonging to exactly w(HT) windows (such a coordinate does always exist); let CÊ=Ê{i:
li<x£ri} be the set of indices of the windows containing x; and consider any feasible
placement vector j that verifies xÐliÐliÊ£ÊjiÊÊ<ÊxÐli for all iÎC. By construction, all intervals
<ti,ji>, with iÎC, intersect coordinate x, that is, w(G(j))Ê=Êw(HT), as desired.

As a consequence, the complexity of determining the placement vector j which
maximizes w(T) is dominated by the complexity of determining a complete subgraph of
HT with maximum size, which requires O(nÊlogÊn) (Gupta et al. 1982).

4. The stability number and clique cover number problems

Let T be a triple set. As any GÎFT is an interval graph, and equation a(G)=k(G) holds for it,
the result of the optimization of a(T) immediately applies to the same optimization of k(T).

4.1 Maximization of a(T) and k(T)

The present Section is devoted to the problem MaxÊa(T) of maximizing a(G) over all
GÎFT.

4.1.1 Computational complexity

Consider problem MaxÊa(T) in optimization form.

Theorem 4.1: The optimization version of problem MaxÊa(T) is NP-hard.
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Proof: Consider the one-machine n jobs scheduling problem with ready and due times. The
problem of minimizing the number of tardy jobs is NP-hard when the ready times are
non-negative (Lenstra et al. 1977). This problem can be trivially reduced to MaxÊa(T) on
the triple set T, which is the collection of all triples tiÊ=Ê<ri,di,pi>, iÊ=Ê1,É,n where ri, di, pi
are the release date, the due date, and the processing time of job i, respectively. The size of
a maximum independent set over all graphs GÎFT is equal to the number of jobs
processed on time. ❏

The following corollary is an immediate consequence of the previous theorem.

Corollary 4.2: The optimization version of problem MaxÊk(T) is NP-hard.

4.1.2 Polynomially solvable cases

Despite the complexity of problem MaxÊa(T) in the general case, there are sets of triples
whose particular structure gives rise to instances of the problem solvable in polynomial
time.

The maximization of a(T) on orderable triple sets can be conducted in O(n2) time using
the algorithm by Kise et al. (Kise et al. 1978), which is based on a dynamic programming
approach.

However, if the given (orderable) triple set is such that such that liÊ³ÊliÐ1, for i=2,É,n,
an O(n) time algorithm is proposed for its solution. We shall assume that triples are
numbered by nonÐdecreasing left endpoints.

Algorithm MM-IS
Input: an orderable triple set TÊ=Ê{t1,t2,É,tn} such that liÊ³ÊliÐ1, for i=2,É,n;
Output: a feasible placement j such that a(G(j))Êis maximum and a maximum sized

 independent set Y;

Begin
For iÊ=Ê1,É,n Do

j iÊ:= 0;
Let Y Ê:=Ê¿;
p Ê:=Ê l1;
For iÊ=Ê1,É,n do

Begin
If p Ê£ Êr iÊÐÊl i
Then Begin

j iÊ :=ÊmaxÊ{0,p ÊÐÊ li} ;
Y Ê:=ÊY  ÊÈ Ê{<ti,j i>};
p Ê := Ê l iÊ+ Êj iÊ+ Êl i
End

End
End.

Notice that Y is a maximum sized independent set for all graphs G(Ê~j ) where Ê~ji=ji for all
i such that <ti,ji>ÎY, and Ê~ji feasible in all other cases.
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Theorem 4.3: Algorithm MM-IS for orderable triple sets which verify liÊ³ÊliÐ1, for i=2,É,n,
is correct.

Proof: The algorithm proceeds by defining a sequence of (nested) subproblems, each
defined on the first i triples, for i=1,É,n. Iteratively, it finds a maximum independent set Y
for the current subproblem. It can be observed that among all possible independent sets
of maximum size for the current subproblem T'ÊºÊ{tj: jÊ=Ê1,É,i}, one is proposed whose
rightmost right endpoint is minimum. We now justify this claim. The proof is by
induction. For iÊ=Ê1 we have YÊ=Ê{(t1,0)} and the above observation holds. Assume that the
observation is true for i and consider i+1. Either interval i+1 can be added to Y and the
observation holds true, or interval i+1 does not admit a feasible placement which allows
its insertion into the independent set Y. In this second case we could either discard interval
i+1 or discard another interval hÊ<Êi+1 and possibly insert i+1 into Y with a suitable feasible
placement; in this latter subcase, in particular, one has to find a new placement to all
intervals h+1,É,i and then possibly place i+1 in a feasible position, so as to insert it into Y.
But, since the given triple set is orderable and ljÊ³ÊljÐ1, for j=2,É,n, one has li+1Ê³Êli, this
second case would produce an Y of the same size to which corresponds a value of p which
can not be smaller than the one corresponding to the previous Y. ❏

If the intervals are already sorted, the complexity of MM-IS is, clearly, O(n).

4.1.3 Lower and upper bounds

Let A=(V,ES) be the subgraph of HT defined on the whole set of vertices and on the set ES

of all strong edges, only.

Theorem 4.4: a(HT)Ê£Êa(T)maxÊ£Êa(A).

Proof: The inequalities follow immediately recalling that HT and A are supergraph and
subgraph, respectively, of any graph GÎFT. ❏

We now describe how to construct and independent set of maximum size for graph A
(recall that A  is not an interval graph, generally speaking). Let X  be a maximum
independent set of the interval subgraph A ' induced in A  by the vertex set
VO\( È

vÎVN
ÊAdjS(v)) (Gupta et al. 1982). We claim that VNÈX is an independent set of

maximum size for graph A. By Theorem 2.5, only one vertex out of {v}ÈAdjS(v) belongs
to an independent set of graph A, for all vÎVN, and, by Lemma 2.4, VN is an independent
set of graph A. By construction, no vertex in XÊ is adjacent to any vertex in VN. On the
other hand, no way of replacing any subset of vertices of VN with any larger sized subset
of vertices of X exists. Thus a(A)Ê=Ê|VNÈX|.
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4.2 Minimization of a(T) and  k(T)

In this section we discuss problem MinÊa(T), that is the problem of finding a feasible
placement j which defines an interval graph G(j) whose maximum independent set has
minimum size among all the graph of the family FT.

The solution to this problem is easily found thanks to the well-known equality holding
among the stability number a(.) and the clique cover number k(.) of a perfect graph.
Consider the intersection graph HT of the set of windows; be G a minimum covering by
cliques of the node set V  of HT (Gupta et al. 1982); for each clique CÎG , let x be a
coordinate contained into every window whose corresponding node is in C; place any
interval iÎ C  so as to contain coordinate x , that is, choose a feasible j i so that
li+jiÊ<ÊxÊ£Êli+ji+li. If there exists windows whose corresponding node belongs to more
than one clique, break ties arbitrarily. It is easy to see that such an algorithm, whose
running time is linear in the number n of triples, finds a placement vector j whose
corresponding graph G(j) has a minimum sized cover by cliques of minimum cardinality
(thus also a maximum sized independent set of minimum cardinality) among all the
graphs in the family FT.

5. The dominating set problem

A subset of nodes D(G)ÍV, of cardinality d(G), is a dominating set for an arbitrary graph
G Ê=Ê(V ,E), iff for any uÎV\D(G) there exists a vÎD(G) such that edge (u,v)ÎE. The
optimization goal is usually finding a minimum sized dominating set, since the problem of
finding one with maximum size is trivial (it is V). The dominating set problem on interval
graphs and on chordal graphs (interval graphs are chordal) is dealt with in (Gupta et al.
1982, Booth and Johnson 1982, Farber 1985, Ramalingan Rangan 1988).

Both problems MinÊd(T) and MaxÊd(T) can be defined, consisting of identifying an
interval graph GÎFT the size of a minimum sized dominating set of which is minimum
(respectively, maximum) among all the graphs in the family. In the sequel, we shall deal
with the minÐmin type problem MinÊd(T), and D(T)min and d(T)min=|D(T)min| will denote
a minimum dominating set for the given triple set T, and its cardinality, respectively.

5.1 Minimization of d(T)

5.1.1 Computational complexity

In this section we shall prove the strong NP-completeness of the MinÊd(T) problem. For
this reason, throughout the present section we shall refer to the decisional version of the
problem.
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Theorem 5.1: Problem Min d(T) in decisional form is NPÐcomplete in the strong sense.

Proof: The problem is immediately seen to be in NP. The reduction is from 3ÐPARTITION,
which is NPÐcomplete in the strong sense (Garey and Johnson 1979): given a nonnegative
integer B, and a finite set AÊ=Ê{a1,Êa2,ÊÉ,Êa3m} of 3m integers such that B4  Ê<ÊaiÊ<ÊB2 , for iÊ=Ê1, É,
3m , and such that å

aiÎA
ÊaiÊ=ÊmB , find a partition of A  into (exactly) m  disjoint sets

A1,ÊA2,ÊÉ,ÊAm such that å
aiÎAj

ÊaiÊ=ÊB for all jÊ=Ê1, É, m (in order to avoid some trivial cases

assume BÊ³Ê6). Notice that by the preceding hypothesis it follows that every set has exactly
3 elements. From a given instance of 3ÐPARTITION construct the following instance of Min
d(T) in decisional form. h is set to 3m and the triple set T is the union of two sets T1 and T2,
where T1Ê=Ê{tiÊ=Ê<0,Êm(B+7)Ð1,Êai>: for iÊ=Ê1, É, 3m} and T2Ê=Ê{tjÊ=Ê<j,Êj+1,Ê1>: for jÊ=Ê0, É,
m(B+7)Ð2, with jÊ¹Êk(B+7)Ð1 for kÊ=Ê1, É, mÐ1}. In what follows, the windows and intervals
of triples in T1 will be called large, and the windows and intervals of triples in T2 will be
called small. In other words, T2 consists of m  sequences of B+6 unit windows with
corresponding unit length intervals, each sequence being separated by the following one
by a unit space (jump), while T1 consists of 3m large windows within each of which an
interval of length ai is to be placed. Notice that each large window properly contains all
the small windows, and the only feasible placement for all small intervals s is jsÊ=Ê0. We
claim that there is a dominating set for the given set of triples T with cardinality not larger
than hÊ=Ê3m, if and only if a partition with the required properties exists for 3ÐPARTITION.
The IF part follows immediately by observing that a dominating set with cardinality
hÊ=Ê3m is easily obtained from a (feasible) solution AjÊ=Ê{aj1,aj2,aj3}, with jÊ=Ê1, É, m, for 3Ð
PARTITION, by setting jsÊ=Ê0 for all small intervals, and by setting jj1Ê=Ê(jÐ1)(B+7)+1,
jj2Ê=Ê(jÐ1)(B+7)+aj1+3, jj3Ê=Ê(jÐ1)(B+7)+aj1+aj2+5 for all jÊ=Ê1, É, m. Let us prove the ONLY IF

part. We shall say that the ith large interval is nicely placed if ji is such that no jump is
contained in [ji,Êji+ai] and there are two small windows ws,Êwt  such that rsÊ=Êji, and
ltÊ=Êj i+ai. It is easy to see that the ith large interval may dominate up to ai+2 small
windows, such maximum value being achieved if and only if it is nicely placed. Since the
assumed hypothesis BÊ³Ê6 implies aiÊ>Ê1 for all iÊ=Ê1, É, 3m, it is immediate to see that any
dominating set of cardinality not larger than 3m is made of all large intervals, only, and all
of them are nicely placed. More precisely, notice that for the same reason no dominating
set for T exists with cardinality strictly less than 3m. The facts that all large intervals are
nicely placed and that B4 Ê<ÊaiÊ<ÊB2  , for iÊ=Ê1, É, 3m, implies that the small intervals of a same
sequence are dominated by exactly three large intervals. The corresponding 3ÐPARTITION
is obtained by inserting into the same subset Aj the three intervals which dominate the
small windows of the jth sequence. Since the reduction from 3ÐPARTITION to Min d(T) is
pseudopolynomial, and 3ÐPARTITION is strongly NP-complete, the result is proved. ❏
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5.1.2 Polynomially solvable cases

This section is devoted to study special cases solvable at optimality. We propose a greedy
algorithm, called Greedy and characterize the special classes of triples on which it finds the
optimal solution. For the sake of simplicity we shall describe the algorithm on the interval
model of the windows, each time suitably positioning the corresponding interval (in the
algorithm T\D is an improper writing for T\{tj:Ê<tj,jj>ÎD}).

Algorithm Greedy:
Input: a set of triples TÊ=Ê{t1,t2,É,tn};
Output: a feasible placement j and a subset D;

Begin
Initially all the windows are unmarked and the set D is empty.
Repeat

Consider the leftmost right endpoint p of an unmarked window of T\D ;
Let XÊ=Ê{i: li£p£ri, iÊÏÊD};
Set jiÊ=ÊminÊ{riÐliÐli,ÊpÐli} for all iÎX;
Let jÎX be such that lj+jj+ljÊ=ÊmaxÊ{li+ji+lj, for iÎX};
Insert j into D;

Mark all windows wi verifying liÊ£Êlj+jj+lj ;
Until all windows are marked
End.

The algorithm produces a feasible placement j and a subset D of indices. The subset D is a
dominating set for the interval graph G(j). As for the algorithm behaviour we notice
what follows: (i) by setting jiÊ=ÊminÊ{riÊÐÊliÊÐÊli,ÊpÊÐÊli} for all iÎX we are actually placing
each interval in the rightmost position within its window, so as to make it cross p; (ii) the
jj are usually set more than once until either j is inserted into D or it does not belong to
the current X anymore; (iii) at each iteration we insert into the current set D the index of
an interval with rightmost right endpoint.

The computational complexity of Algorithm Greedy amounts to O(n2). In fact, in the
worst case the algorithm considers O(n) different subsets X, whose cardinality is bounded
by n, and the choice of j takes globally O(n2) throughout the whole execution of the
algorithm.

1 2 3 4 5 6 7

8
9

1 2 3 4 5 6 7

8
9

Fig. 4 Ð Solution output by Algorithm Greedy (above) and an optimum solution (below).

Algorithm Greedy cannot guarantee to determine the optimal solution on arbitrary triple
sets since the problem is NP-Hard in the strong sense (Theorem 5.1). An example with
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T Ê=Ê{t1=<3,4,1>, t2=<5,6,1>, t3=<7,8,1>, t4=<10,11,1>, t5=<12,13,1>, t6=<14,15,1>,
t7=<16,17,1>, t8=<1,9,3>, t9=<2,18,5>} is shown in Fig. 4: above the solution output by
Algorithm Greedy, below an optimum one (the thin rectangles represent the placed
intervals, and in particular the grey ones are those in the dominating set).

However there are special classes of triples on which Algorithm Greedy determines an
optimum solution, as illustrated in the sequel.

Definition 5.2: A set of triples is good if throughout the execution of Algorithm Greedy the
current p is greater than the right endpoint rj of the window corresponding to the last
index inserted into D.

Theorem 5.3: Let T be a good set of triples. Then, the placement vector j output by
Algorithm Greedy is an optimal solution to MinÊd(T).

Proof: By contradiction. Assume that there exists a placement j* such that a minimum
dominating set D* on G(j*) has cardinality smaller than |D|. Let K, K* denote the set of
intervals corresponding to indices in D, D* placed according to j, j*, respectively. The
proof consists in showing that taken any coordinate t the number of intervals of K whose
right endpoint lays on the left of t is never smaller than the number of intervals of K*
whose right endpoint lays on the left of the same point t, the contradiction being found in
the fact that D* is not a dominating set for G(j*). For the sake of simplicity we shall denote
with l(s),Êr(s) the left and right endpoint of an interval sÊÎÊKÈK*, namely l(s)Ê=Êls+js and
r(s)Ê=Êls+js+ls.
Sort the intervals in K(K*, respectively) by non decreasing right endpoint, resulting in the
sequence x1Ê, É, Êx|K| (y1Ê, É, Êy|K*|). Let also wa be the window with leftmost right
endpoint ra in the given triple set. Consider x1 and y1, it must be the case that
l(x1),Êl(y1)Ê£Êra, otherwise node a would not be dominated contradicting the hypothesis.
Because of the algorithm behaviour, it is also the case that r(y1)Ê£Êr(x1).
Now consider the next pair x2, y2. We shall prove that r(y2)Ê£Êr(x2). Infact: after having
fixed the position of x1, the algorithm moves to the leftmost right endpoint rb of a not-yet
dominated window wb (thus r(x1)Ê<Êlb), and sets the placement j2 of x2, resulting in
l(x2)Ê£ÊrbÊ£Êr(x2). Notice that the algorithm chooses x2 in the set C(rb)Ê=Ê{i: such that
liÊ£ÊrbÊ£Êri}, which x1 does not belong to, as by hypothesis rbÊ>Êrx1. As r(y1)Ê£Êr(x1), clearly,
window wb is not dominated by y1. However there must exist another interval in K*
which dominates window wb. Indeed such interval must be  y2 and one has l(y2)Ê£Êrb. If
r(y2)Ê£Êrb, it is also r(y2) £ r(x2). If r(y2)Ê>Êrb then y2ÎC(rb), and the result follows from the
algorithm behaviour.
The reasoning can be repeated, always comparing the pair of intervals xi,Êyi, for iÊ=Ê3Ê, É,
Ê|K*|, concluding that r(y|K*|)Ê£Êr(x|K*|). Consider x|K*|+1. The placement of this interval
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is set in order to dominate a not-yet dominated window wc, verifying r(x|K*|)Ê<Êlc. This
contradicts the hypothesis that K* is a dominating set, and the claimed thesis follows. ❏

This theorem, clearly, does not allow to know if Algorithm Greedy will output an optimal
solution before running it. But, of course, it is a sufficient condition to prove the optimality
of the output solution. There are special set of triples which can be proved aÐpriori to be
good: on these set of triples we know that Algorithm Greedy will output an optimal
solution. This happens, for example, for the triple sets described in the following
theorems.

Theorem 5.4: An orderable triple set is good.

Proof: Let i be the last index inserted by the algorithm into the current D, and let j be the
index of window with leftmost right endpoint among the not yet marked (i.e. dominated)
ones. Then ljÊ>Êli+ji+li. Since, clearly, li+ji+liÊ³Êli, and the set of triples is orderable, we
may conclude that rjÊ>Êri, and the claimed thesis follows. ❏

Theorem 5.5: Let TÊ=ÊÊ{ti=<li,ri,li>, iÊ=Ê1,É,n} be a triple set verifying liÊ³ÊriÐliÐ1, for
i=1,É,n. Then T is good.

Proof: Let j denote the last element inserted into D, and i be the index of an unmarked
window with leftmost right endpoint ri (unmarked w.r.t. the current j and D). One has:
r i> li, by definition; liÊ³ Ê lj+ j j+ l j+1, as i is unmarked; and lj+ j j+ l j+1Ê³ Êr j, as
ljÊ³ÊrjÐljÐ1, by hypothesis. Since p=ri, the thesis follows. ❏

Note that in a triple set with the property required in the Theorem every interval can
assume either one of at most 2 positions, that is jiÊÎÊ{0,1} for all iÊ=Ê1,É,n. In this case
ÒmostÓ edges of HT are strong.

Theorem 5.6: Let T be a triple set such that HT  has only strong edges. Then T is good.

Proof: Let j denote the last element inserted into D, and i be the index of an unmarked
window with leftmost right endpoint ri (unmarked w.r.t. the current j and D). One has:
riÊ>Êli, by definition; liÊ³Êlj+jj+lj+1, as i is unmarked; liÊ>Êrj, as all edges are strong, by
hypothesis. Since pÊ=Êri, the thesis follows ❏

The graph HT contains only strong edges if, for example, the given triple set T verifies
li=riÐli, for i=1,É,n (that is, intervals are actually not shiftable at all), or if liÊ³ÊriÐliÐ1, for
i= 1 , É , n  and every pair i ,j  of mutually intersecting windows satisfies
minÊ{ri,rj}ÊÐÊmaxÊ{li,lj}Ê³Ê2.

However, if HT has only strong edges, in the family FT there is only one graph G, which is
isomorphic to HT. Thus the O(nÊlogn) algorithm for computing a minimum cardinality
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dominating set on interval graphs can be used on G=HT (Gupta et al. 1982, Farber 1982).
The intervals corresponding to the windows in the computed dominating set are a
minimum sized dominating set for the unique graph GÎFT, and also an optimal solution
to problem MinÊd(T).

More sophisticaded algorithms for solving problem MinÊd(T) in the general case are
proposed in (Bonfiglio et al., 1987), where their behaviour is experimentally compared
with that of Algorithm Greedy.

5.1.3 Lower and upper bounds

Motivated by the complexity result we here state lower and upper bounds to the
cardinality d(T)min of a minimum dominating set for the given set of triples T. As far as
lower bounds are concerned, we state the following result

Lemma 5.7: Let T be a set of triples. Then |DH|Ê£Ê|DG|, for any GÎFT.

Proof: Let AdjF(K) denote the set of nodes adjacent to at least one node of a subset KÊÍV in
a graph FÊ=Ê(V,EF). The claimed thesis follows immediately: in fact AdjG(K)ÊÍÊAdjH(K), as
EGÊÍÊEH. ❏

From this Lemma, it immediately follows that

Theorem 5.8: Let T be a set of triples. Then |DH|Ê£Êd(T)min.

An upper bound to d(T)min is now proposed.

Lemma 5.9: Let T be a set of triples. Then |DG|Ê£Êa(H), for any GÎFT.

Proof: Let KÊ=Ê{K1,ÊK2,ÊÉ,ÊK|K|} be a minimum cardinality covering by cliques of the node
set V of interval graph H  (i.e., |K|Ê=Êk(H), where k(H) is the clique cover number of H).
W.l.o.g. assume that a consecutive clique arrangement <K1,ÊK2,ÊÉ,ÊK|K|> is given, and let
p(Ki) be the rightmost coordinate such that {wtÊ:ÊltÊ£Êp(Ki)Ê£Êrt}Ê=ÊKi. Take any two
consecutive cliques Ki,Ki+1. By the maximality of each clique it follows that there exists (at
least) a node vji belonging to Ki but not belonging to Ki+1. Consider the jith interval and
place it in such a way that it contains coordinate p(Ki), that is, choose j ji such that
lji+jjiÊ£Êp(Ki)Ê£Êlji+jji+lji, for iÊ=Ê1, É, |K|. The set J of all intervals ji's for iÊ=Ê1, É, |K| is
clearly a dominating set for some GÎFT. Since |DG|Ê£Ê|J|Ê=Êk(H), and k(H)Ê=Êa(H),  as H is
a perfect graph, the claimed thesis follows. ❏

From this Lemma we immediately derive the following:

Theorem 5.10: Let T be a set of triples. Then d(T)minÊ£Êa(H).
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A different upper bound can be obtained by relating the cardinality of a minimum
dominating set of T to the cardinality of a minimum dominating set of a particular subset
of triples, which we here define.

Definition 5.11: The orderable subset of triples Tp associated to the given set of triples T is
obtained by removing from T all triples whose window contains another window of T.

Notice that the intersection graph Hp of the set of windows in Tp is an induced subgraph
of H. Notice also that TpÊ=ÊT if T is orderable, and that every graph GÎFT p is a partial
subgraph of H.

Theorem 5.12: Let T be a set of triples. Then d(T)minÊ£Êd(Tp)min.

Proof: Consider a triple tuÎT\Tp. By definition of orderable subset of triples Tp, there exists
(at least) a triple tvÎTp whose window is properly contained into window u . If
(tv,jv)ÎD(Tp), for some jv, we are done. If (tv,jv)ÏD(Tp), consider a (tz,jz)ÎD(Tp) which
dominates tv, that is either lvÊ£Êlz+jzÊ£Êrv or lvÊ£Êlz+jz+lzÊ£Êrv or both. Since luÊ£Êlv and
rvÊ£Êru, the triple tz clearly dominates also tu. ❏

The importance of this Theorem lays in the fact that problem MinÊd(Tp) can be solved at
optimality by Algorithm Greedy, in fact Tp is an orderable set of triples.

It can also be proved that

Theorem 5.13: Let T be a set of triples. Then d(Tp)minÊ£Êa(H).

In order to prove the theorem above we need the following

Lemma 5.14: Let T be a set of triples. Then a(Hp)Ê=Êa(H).

Proof: Let A be an independent set of H with maximum cardinality, that is |A|Ê=Êa(H).
Consider AÊÍÊV(Hp). Then A is an independent set for Hp, and of course a(Hp) =Êa(H), as
Hp is an induced subgraph of H. Consider AÊÊ/Í ÊV(Hp) and be xÊÎÊA\V(Hp). Let Adj(v)
denote the set of vertices adjacent to a vertex v in H and v itself. We claim that among the
vertices adjacent to x  in H  there exists one, call it y , such that y ÊÎ ÊV (H p) and
Adj(y)ÊÍ ÊAdj(x). This follows from the fact that there exists a window wy properly
contained into window wx. Thus A\{x}ÊÈ Ê{y} keeps being a maximum cardinality
independent set for H. ❏

Proof of Theorem 5.13: By Theorem 5.10, d(Tp)minÊ£Êa(Hp). By Lemma 5.14, a(Hp)Ê=Êa(H),
and the claimed thesis follows. ❏



22

6. Conclusions and future work

In this paper we discussed of a set of intervals each allowed to be placed within a
prescribed larger interval, called window. Depending on the exact placement of each
interval within its window, the resulting intersection graph will have different values of
some measures defined on it, like for example the size of a largest independent set or of a
largest complete subgraph. Moreover, by considering the intersection graphs of all the
sets of intervals obtained by varying their position in all possible feasible ways, we
construct a family FT of interval graphs.

We define an optimization problem on a family FT of interval graphs. It consists in
finding an interval graph of FT on which a chosen classical graph measure has optimum
value, over all the interval graphs of FT. In particular we chose, as measures, the size of a
largest independent set, the size of a largest complete subgraph, and the size of a
minimum dominating set.

The conducted study shows that the difficulty of an optimization problem defined on a
set of shiftable intervals mainly resides in the selection from FT of an interval graph with
the required properties, and not on the evaluation of the chosen measure on the single
interval graph. And in fact, in three cases an optimization problem defined on a set of
shiftable intervals turns out to be N P Ðcomplete, while the evalutation of the
corresponding measure on an interval graph has an O(nÊlogn) computational complexity.

The general optimization problem we formulated in section 1, can be considered as a
general framework which can be used to formulate many practical problems. A quite
natural application is in the field of scheduling. As pointed out in the Proof of Theorem 4.1,
the release date, due date, and processing times of a set of jobs fit into the triple set model
in a natural way, as well as the schedules of the jobs correspond to placements of the
intervals, and, for example, minimizing the number of identical machines is equivalent to
minimizing the clique number, or minimizing the number of tardy jobs is equivalent to
maximizing the independent set. Other problems can find a direct interpretation in terms
of shiftable intervals. However, the study of a set of shiftable intervals by itself suggests
many other interesting problems, as in the case  when the chosen measure is the size of a
dominating set.

The purpose of this paper is mainly introductory, hence only few of the possible
features of the model have been dealt with. We think that, among the others, a couple of
problems are of particular interest in this area. One is the recognition problem: given a set
T of n triples, and an interval graph G defined on n vertices, which contains all the strong
edges of HT, and any subset of weak edges (possibly the empty one), does G belongs to
FT? As noticed in section 2, the set of all interval graphs with the required properties
contains FT, and in some case in a proper way, like in the discussed example. This means
that the properties required for G, although quite restrictive, are still not sufficient enough
for a precise description of FT. The second one consists in considering sets of circular
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shiftable intervals: intervals are allowed to be placed within windows which are arcs of a
circumference (in other words, the problem is defined on a cylindric surface, instead of a
two-dimensional plane one).
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