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Abstract

In this paper new exible collective transportation system are presented. The proposed
system is suitable in the urban or interurban setting, and conjugate a traditional line trans-
portation system with an on demand system. Several variants of the model are discussed, and
for each variant a mathematical model is proposed. Solution approaches are also illustrated.
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Traditional public transport systems are evolving towards more exible organizations in order

to capture additional demand and reduce operational costs. Such a trend calls for new models
and tools to support the management of new services that make use of public facilities to meet

individual needs.
A few solutions are already implemented and available in many urban centers; among them

we mention the , , and

for handicapped and elderly people [3, 7, 8].
transportation is a suitable candidate for implementing this kind of service: we

speak of low demand transportation whenever the transportation system is not exploited up to
its potential capacity, leaving room for alternative use of the resources involved. An example is

the urban transport setting; this may concern buses traversing lines that serve areas with a low
level of urbanization as well as buses operating during o�-peak time slices or during holidays.

In all cases the transportation service must be guaranteed although e�ciency is also an issue.
This chapter aims to discuss a new transportation system that provides basic transportation,

and at the same time it is able to attract additional passengers by allowing the individual user
to induce detours in the vehicle routes through a new itinerary closer to the desired one. This
system represents a good compromise between an expensive personalized service that precisely

ful�lls the individual request, such as a taxi ride would be, and the cheap alternative supplied
by the traditional public transport which may not provide transportation exactly along the

requested itinerary.
This chapter introduces a new transportation system, that we shall call Demand Adaptive

System, which integrates traditional bus transportation on multiple lines and service.
The suggested system is designed as follows. Let us consider a set of lines: each traversal of

the line is described, as usually, in terms of a set of time-tabled trips. We shall call the stops
in the original time table the . To introduce some exibility into the vehicle

routes, the vehicle is allowed to transit by each compulsory stop during a . Beside
the compulsory stops, a set of stops to be activated on demand ( hereafter) is
available to the users. Between each pair of consecutive compulsory stops a set of optional stops

is de�ned: this is the set of stops that can be visited during the trip from a compulsory stop to
the next. Traveling times of the arcs of the physical network are known. A user issues a

specifying a stop where to be picked up and a stop where to be dropped o�. In the
absence of requests involving optional stops, the vehicle travels along the shortest path on the
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network within each pair of consecutive compulsory stops. The acceptance of a request implies
the rerouting of the vehicle for that part of route involving the optional stop(s) related to the

request. Note that the detour may cause a delay of the transit time at the following stops.
The description of the system made above enlightens the di�erences between a Demand

Adaptive System ( ) and a Demand Responsive System ( ), such as dial-a-ride, and so on.
adapts itself to attract as much demand as possible, but it operates within a conventional

line transportation framework. Indeed, users who do not explicitly call for the service, but board
and alight at compulsory stops only can also use as a traditional bus service. On the other

hand, is an on demand and personalized service, which usually requires higher costs.
We can distinguish di�erent Demand Adaptive System models depending on the policy used

to deal with requests:

: Requests , if their acceptance cause infeasibilities, or are not economically
worthy. If a request is accepted, users must be picked up and dropped o� at the

stops they asked. Model has been introduced in [4, 5].

: Users are picked up precisely at the requested stop, but they may be dropped o�
in the vicinity of the requested alighting stop (at the closest compulsory stop, in the worst
case), if this cannot be included in the vehicle tour. For this inconvenience the service

management pays a penalty to the users, that can be considered in terms of a discount on
the travel fare.

: Users are served, but they can be picked up and/or dropped o� at stops in the

vicinity of the requested ones, and in these cases the service management pays a penalty.

The models’ di�culties depend on the number of lines, or whether vehicles operate a single
tour or multiple tours along the same line. Starting from the basic model, where a single

vehicle runs once along a single line circuit, the model can be generalized by considering vehicles
operating multiple tours, multiple intersecting lines, and users being allowed to board at one stop

of a line and alight at a stop of another line, traveling on vehicles that connect in compulsory
stops. In this latter case, synchronization features must be taken into account.

Two alternative policies can be adopted for request scheduling.
The �rst case processes the requests . It selects a set of optional stops among the ones

having been requested, such that the pro�t is maximized and the resulting tour can operated
by the vehicle. Once the vehicle itinerary has been determined it cannot be modi�ed.

The second scenario processes the requests , taking into account the current position of

the vehicles with respect to their schedules. The vehicles are rerouted, involving a reoptimization
of their schedules and a feasibility check. In this case the problem is highly constrained since

previously accepted requests cannot be discarded and scheduled time of boarding stops cannot
be anticipated. In this context, time windows act also as a warranty of the quality of the service

with respect to requests already accepted. Since rerouting involves the computation of shortest
Hamiltonian paths and time response is crucial in the on-line context, exact algorithms are

not suitable, while we have to rely upon fast heuristics such as insertion heuristics [9] or other
approaches that we will introduce at the last paragraph.

We formalize the three di�erent service models ( , and ) as Mixed Integer
Linear Programming problems, analyze their mathematical properties, and suggest heuristic
procedures for their solution. Moreover, the models are extended considering a single line with

one vehicle operating multiple tours. This study represents the starting point for analyzing the
more general case of multiple lines. Finally the on-line problem is briey discussed.
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2 Notation and problems de�nition
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We consider a line structured as a simple circuit, served by a single vehicle, starting and

ending its tour at the same terminal. Along the circuit the vehicle passes by a sequence
= of + 1 compulsory stops, where the terminal is the �rst ( ) and

the last ( = ) element of the sequence. For each stop a time window [ ] is de�ned;
the vehicle must leave not before and not later than , but it may arrive there before

for = 1 ; is the maximum trip completion time, and = is the starting time of
the vehicle from the terminal.

A set of optional stops is associated with each pair of consecutive compulsory stops
. The vehicle passes by an optional stop only if a related boarding or alighting request

has been issued. The sets are mutually disjoint. Considering any pair we can
de�ne a directed graph = ( ), such that = is the stops set and

is the set of arcs connecting the stops. In the following we shall refer to as
. Finally, = ( ) is the whole graph: = . The travel time and the

travel cost , for each ( ) of possible consecutive stops, either compulsory or optional,

are given. Without loss of generality, we can suppose that the triangular inequalities hold.
Let us denote by the set of paths in from to . The vehicle itinerary in the

segment is a path , having travel time ( ) and travel cost ( ) given by the sum of the
travel times and the costs of its arcs, respectively:

( ) = ; ( ) = (1)

Let be the starting time from ; we assume that = . The sequence of paths de�ned

for each segment forms a starting and ending at the terminal. Let us denote by
the path chosen in segment ; then, the arrival time at the end of the segment, that is at the

stop , is + ( ). The resulting tour is when:

(i) + ( ) = 1 1;

(ii) = 2 ;

(iii) + ( )

Note that, since no feasible tour can contain a path whose travel time exceeds ,
= 1 , we can restrict to the set of paths with travel time less than or equal to

. Let be the set of feasible tours; the ( ) of tour is given by the
sum of the costs of the paths forming .

Let ( ), = 1 , be the node set (i.e. the ) of path of segment
, and let ( ) = ( ) be the set of all served stops.

Let us indicate by the ; the request is de�ned as the pair ( ) ( ) of
boarding and alighting stops; ( ( )) and ( ( )) represent the segments which the boarding
stop ( ) and the alighting stop ( ) belong to, respectively. Let us assume that, for each request

, ( ( )) ( ( )) holds. The assumption that ( ) and ( ) can not belong to the same
segment is quite realistic. Indeed, any two optional stops within the same segment are relatively

close to each other. Because of this assumption no precedence constraints must hold between
stops within the same segment, while precedence constraints regarding the pair stops of each

request is implicitly handled by the sequencing of compulsory stops.
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As far as model is concerned, given a tour , a request is only if both the
boarding and the alighting stops belong to ( ); the subset ( ) of the requests satis�ed

by tour is given by:

( ) = : ( ) ( ) ( )

A ( ) 0 is associated with each request ; the ( ) of tour is

given by:

( ) = ( )

De�ning the as the di�erence between the bene�t and the cost, the problem identi�ed
by model is to �nd a tour of maximum pro�t:

( ) ( ) = max ( ) ( ) :

As far as models and are concerned, we notice that all requests are served.
However, due to the time window constraints, not all users can be picked up or dropped o�

(depending on the service model under consideration) at the desired stops. Thus a global
penalty measure must be associated with each feasible tour.

Given a request de�ned by ( ) ( ) , penalties ( ) and ( ) are associated with not
serving stop ( ) and ( ), respectively. In this case the user is picked up or dropped o� at some

other stops in segments ( ( )) and ( ( )), at worst at the closest compulsory stop. Actually,
the penalty should depend on which stop is selected for this purpose, therefore depending on

the actual vehicle itinerary, but for sake of simplicity, we shall assume the penalty to be pro-
portional to the distance between the missed stop and the closest compulsory stop. That is the

service management o�ers a discount to the user as he/she where picked up or dropped o� at
a compulsory stop, even though he/she is allowed to take advantage of any other optional stop
included in the actual tour.

Let us introduce the de�nition of of segment , denoted by � = 1 as
the minimal path with respect to the request management policy. In the case of model ,

� is given by the least travel time path from to passing by all the optional stops
corresponding to boarding requests in segment , while, in case of model and , the

basic path � is the minimum travel time path from to without intermediate stops. Note
that, in � involves serving the users at the compulsory stops or rather than at

the requested optional stops in segment , while in model � involves the rejection of all
requests concerning optional stops in segment . Moreover, let � denote the basic tour formed

by the basic paths. Note that in , such a tour might not exist, since even the basic
tour passing by all boarding stops can violate the time window constraints. We will discuss this
problem in section 4.

As far as models and are concerned, under the hypothesis of constant penalty
made above, each optional stop not belonging to the basic tour, once introduced in the tour,

decreases the penalty by:

( ) = ( ) (2)

in the case of , while in the case of we have

( ) = ( ) + ( ) (3)
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Given a path we denote by ( ) the with respect to the basic path
� :

( ) = ( ) ( ( ) (� )) (4)

Similarly we can de�ne the ( ) as the sum of paths net worths:

( ) = ( )

Thus, regarding model , let be the of the basic tour �, that is the di�erence

between the bene�t of all requests and the sum of all penalties. While in model the net
bene�t is given by the di�erence between the bene�t of all requests and the sum of all penalties

due to alighting only stops. In models and , the objective is to �nd the feasible tour
that minimizes the global penalty, that is the one maximizing the pro�t of the basic tour �

plus the tour net worth of :

(�) + max ( ) :

As previously discussed, the main objective of service model is to select the requests to
be served, and �nd a maximum pro�t feasible tour. The mathematical model makes use of the

following variables:

= 1 if path is chosen, = 0 otherwise, = 1 ;

= 1 if ( ) ( ), where is the chosen path ( = 1), = 0 otherwise, ;

= 1 if ( ) ( ), where is the chosen path ( = 1), = 0 otherwise, ;

= starting time of the vehicle from , = 1 , with = .

Therefore, a request is served if and only if and are equal to one.

( 1) : max ( ) ( )

: ( ) = 1 (5)

: ( ) = 1 (6)

= (7)

= 1 = 1 (8)

+ ( ) = 1 1 (9)
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= 1 (11)

0 1

0 1 = 1

where = 1 if ( ) ( ), = 0 otherwise, , , and = 1 if
( ) ( ), = 0 otherwise, and .

Notice that variable is equal to one if and only if the vehicle passes by stop ( ) and
request is served, and, similarly, is equal to one if and only if the vehicle passes by stop

( ) and request is served.
Constraints (5) and (6) link the choice of the path to the served requests; constraints (7)

couple boarding and alighting stops for each request. Constraints (8) impose the selection of
one path for each segment, while constraints (9), (10) and (11)state the requirement that the

selected paths form a feasible tour.
Problem ( 1) is NP-Hard since a particular instance reduces to a TSP. Later on, we will

discuss some methods to compute upper bounds and heuristic solutions for the problem.

Let us now consider a service model where, instead of having one vehicle operating a single tour
along the circuit line, tours of the same circuit line are performed. The multiple

tours can be performed by a single vehicle consecutively, or by multiple vehicles. For the sake
of simplicity, we focus on the case of a single vehicle, though the model can be immediately

generalized to the case of multiple vehicles. In the multiple tour case, a request is
speci�ed by a triplet ( ) ( ) ( ) where ( ) is the ; instead of simply

discarding a request, the service management can decide to serve it in a tour di�erent from the
ideal one. Thus, the problem is actually a requests assignment to tours. In the following we give

a mathematical formulation of the problem. Let [ ] be the time window at compulsory stop
during the -th tour, = 1 , = 1 . Since the tours are sequentially operated,

we can assume for = 1 1.
It is reasonable to assume that the bene�t of a request depends on the tour it is assigned

to: being zero if the request is served too late or too early with respect to ( ), and decreasing

as the service delay or earliness increases. Let ( ) be the bene�t associated with request if
served during the -th tour, for each , = 1 . Note that, oppositely to the case of

the single tour, a request = ( ) ( ) ( ) can have ( ( )) ( ( )), that is a user can
alight in a stop which is located before in the line with respect to the boarding stop. In this

case the user is picked up during one tour and is dropped o� during the successive tour. Let
be the set of requests such that ( ( )) ( ( )), and = .

The mathematical model is the following:

( 1+) : max ( ) ( )

: ( ) = 1 = 1 (12)
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: ( ) = 1 = 1 (13)

= = 1 (14)

= = 1 1 (15)

1 (16)

= 1 = 1 = 1 (17)

+ ( ) = 1 1 = 1 (18)

+ ( ) = 1 1 (19)

= 1 = 1 (20)

0 1 = 1

0 1 = 1 = 1

where variables give the starting time from stop in the -th tour, variables , are

equal to one if the request is served in the -th tour, and variable is equal to one if path
belongs to the -th tour. Constraints (16) state that all requests must be assigned to a

tour at most.
If we consider the case where more vehicles operate on the same line, constraints (15) become:

= = 1 (21)

where is the number of vehicles operating on the line. Obviously, as far as time windows are
concerned, , for = 1 .

The solution approach to this problem can be similar to the one adopted for the single tour
case, even though the size is much larger and other decompositions could be introduced.

Provided that all requests are served and all users are picked up at the desired stops, the main
objective of service model can be seen as de�ning a maximum net worth feasible tour. For

the sake of simplicity we assume that there exists a basic tour �, that is a tour passing by all
boarding stops and ful�lling the time window requirements. Note that, in this model, is the

set of all paths in passing by all nodes corresponding to boarding stops of segment .
Let be the net bene�t of �, that is:

= ( ) ( )
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4.1 DAS2+: a multiple tour service model
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where ( ) is the alighting penalty associated with request . Let � be the set of optional
stops not in the basic path � given by the path passing by all boarding stops of segment :

� = (� )

For each optional stop � we can compute the saving with respect to resulting from
the insertion of in the path, as in (2), and for each feasible path we can compute the

with respect to the basic path � as stated by (4).
Note that the net worth (� ) of the basic path � is equal to zero. Let be the set of all

paths going from to , passing by at least all boarding stops of segment and ful�lling
the time window constraints. The mathematical model of the problem of �nding the feasible

tour maximizing the net worth with respect to � is the following:

( 2) : max ( )

= 1 = 1 (22)

+ ( ) = 1 1 (23)

+ ( ) (24)

= 1 (25)

0 1 = 1

Constraints (23), (24) and (25) state the feasibility of the departure times: the vehicle must

leave after it has arrived, and within the time window. It should be remarked that Problem
( 2) has a block structure, where each block corresponds to a segment. Note that the proposed
model involves variables only, while variables and have been omitted with respect to

model ( 1). This is due to the fact that all requests are served and the selection of the stops
to be served is implicit in the path choice and in the de�nition of ( ). The simple formulation

suggests a solution approach based on column generation methods, as discussed in section 6.2.

As mentioned in the previous sections, the basic tour that passes by all boarding stops can be
infeasible, that is it may violate the time windows constraints in some compulsory stops. In

this circumstance, the service management may decide to discard some requests, reducing the
problem to the one seen in the case of . Alternatively, we can think of a service system

with multiple vehicles, or with a single vehicle making multiple tours. In this case, instead of
discarding requests, the service management has to decide in which tour a requests has to be

served. As in , a di�erent bene�t can be associated with each request depending on the
tour in which it is served. As in section 3.1, let be a variable equal to 1 when path of

segment is selected during the -th tour, and 0 otherwise, and let be a variable saying if
request is served during the -th tour, that is the vehicle passes by stop ( ) during the -th

tour. Moreover, is equal to one if the vehicle passes by stop ( ) in the -th tour and request
is served. The mathematical model is:
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( 2+) : max ( ) (1 ) +

( )

: ( ) = 1 = 1 (26)

: ( ) = 1 = 1 (27)

= 1 (28)

= 1 1 (29)

= 1 (30)

1 (31)

= 1 = 1 = 1 (32)

+ ( ) = 1 1 = 1 (33)

+ ( ) = 1 1 (34)

= 1 = 1 (35)

0 1 = 1

0 1 = 1 = 1

Note that constraints (31) are redundant being implied by constraints (28), (29) and (30).
The assignment of requests to tours is explicitly speci�ed by way of variables . In the

objective function the contribution of the bene�t of a request depends on the tour the request is
assigned to (stated by variables ). Moreover, the penalty in case of displacement (depending

on variables ) and the cost of the selected paths have to be subtracted. Smilarly to ,
the model can be generalized in order to deal with multiple vehicles.
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5.1 DAS3+: a multiple tour service model
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5 DAS3: minimizing the penalty of boarding and alighting stops
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In service model all requests are served, but users, instead of being picked up and/or

dropped o� at the desired stops, can be picked up and/or dropped o� at alternative stops.
This opportunity allows the service management to determine a feasible tour in any demand

condition. As in the case of the inconveniences caused to the users will be payed in terms
of penalties (discounts on the transit fare). The approach is similar to that of , though

simpli�ed. Let us rede�ne some concepts taking into account the additional degree of freedom
introduced in the boarding stops. For each segment the basic path � goes straight from

to , thus the set of optional stops to be considered is:

� = : = ( ) or = ( )

For each optional stop � we can compute the saving with respect to as stated by

(3); as in the case of , for each feasible path we can compute the with
respect to the basic path � as in (4).

The mathematical model of the problem of �nding the feasible tour maximizing the net
worth with respect to � is the following, and is exactly the same of ( 2) except for the de�nition
of ( ), � , and . In particular, the set of feasible paths is, as in , the set of paths

going from to and it is larger than in model , since paths are not obliged to pass
by all boarding stops of segment .

( 3) : max ( )

= 1 = 1 (36)

+ ( ) = 1 1 (37)

+ ( ) (38)

= 1 (39)

0 1 = 1

Note that in the case of there always exists a feasible solution, for example �.

As in the case of , model can be extended to comply with multiple tours. Note that,
by contrast with , even if a request is boarded during the -th tour, both and are
equal to 0 whenever the user is not boarded and alighted at the requested stops. Therefore, a

new set of variables is needed to denote the requests assignment to tours: let be equal to 1
if request is boarded during the -th tour, and 0 otherwise. The mathematical model is the

following:
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( 3+) : max ( ) (1 ) (1 )

( )

: ( ) = 1 = 1 (40)

: ( ) = 1 = 1 (41)

1 (42)

1 (43)

= 1 (44)

= 1 (45)

= 1 (46)

= 1 1 (47)

= 1 = 1 = 1 (48)

+ ( ) = 1 1 = 1 (49)

+ ( ) = 1 1 (50)

= 1 = 1 (51)

0 1 = 1

0 1 = 1 = 1

for the sake of clarity, we explicitly formulate constraints (42) and (43), even though they
are redundant, since implied by (44), (45), (46) and (47).

As for and model can be generalized to deal with multiple vehicles.
Model can be extended in order to guarantee a good service level as, for example, by

introducing the rule according to which a passenger either is displaced in space or in time. In
the �rst case a request is not served at the requested stops, but it must be served during the
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6 Solution approaches

6.1 Lagrangian Relaxation
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ideal tour ( ); in the other case a request is not served during tour ( ), but it must be served
at the requested stops. This condition is enforced by the following set of constraints:

+ = 1 = 1 (52)

+ = 1 = 1 (53)

+ = 1 = 1 1 (54)

Note that the same rule can be introduced in model also, by adding constraints (53)

and (54) where is replaced by .

In this section we propose three possible approaches to the models described so far. The �rst is
a Lagrangian Relaxation, which is applicable to ( 1) but it can be extended to ( 1+), ( 2+),

and ( 3+). The second approach is a Column Generation, which is suited for ( 2), and ( 3),
where request selection variables are not present. These approaches, beside an upper bound

value, yield other information which can be exploited in the construction of a heuristic solution.
A possible heuristic approach exploiting this information is discussed too.

Let us illustrate the case of .

The Lagrangian relaxation of constraints (7), (9) and (10) with multipliers and , respec-
tively, yields a set of separable subproblems, one for each segment , of the form:

( ( ) ) : max ( ( ) ) +

( ) ( ( ) + ( ))

: ( )

: ( )

= 1

0 1 : ( )

0 1 : ( )

0 1
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6.2 A Column Generation approach
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Each subproblem ( ( ) ), beside being of smaller size with respect to the global problem
( 1), is also quite a�ordable to solve. In fact the request bene�ts (including the e�ect of

multipliers ) can be included in a node weight of graph , and the cost of the links (including
the e�ect of multipliers ) can be included in an arc weight of the same graph. Thus the problem

is a maximum path problem with a constraint on the travel time. It should be noted that in
graph , with the above weight de�nitions, positive cycles may occur; however, due to the time

windows constraints, the problem is bounded and can be e�ciently solved as described in [2].
The Lagrangian Dual is solved by way of a bundle algorithm [1] which provides an upper

bound to the problem, a collection of feasible paths for each segment, and a set of optimal
multipliers.

Problems ( 2) and ( 3) can be naturally approached through Column Generation. Let us briey
describe the method in the general case, since the algorithm can be easily specialized considering

the di�erent de�nitions of and ( ) given for and . The master problem ( �) is the
LP relaxation of ( 2) or ( 3) which considers paths in = 1 , only. According to
the Column Generation method, ( �) is solved to optimality. Then, paths in are searched

such that, if considered, would improve the current solution. Initially may contain � only,
or a set of feasible paths heuristically determined. Due to the block structure, the search of

a path to enter the problem can be decomposed into subproblems, one for each segment. The
master problem ( �) is the following:

( �) : max ( )

= 1 = 1 (55)

+ ( ) = 1 1 (56)

+ ( ) (57)

= 1

0 = 1

Let , be the optimal dual variables of problem ( �) associated with constraints (55),

(56) and (57), respectively. The column generation phase seeks a feasible path in any segment
whose reduced cost with respect to , is greater than zero. If such a path exists for some

, then the current solution of ( �) can be improved by adding to ; when such a path does
not exist for each , the current solution is optimal for the LP relaxation of ( 2) or ( 3). Let

us briey analyze the problem of searching a positive reduced cost path in segment .
The reduced cost of a path is:

�( ) = ( ) ( ) = 1 ;

14
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6.3 Heuristic approaches
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by applying the de�nition of path net worth (4), path travel time, and path cost (1), we get:

�( ) = ( + ) + ( ) + (� )

The search of a feasible path with positive reduced cost can be accomplished by looking for

the longest feasible path from to in where arcs have weight ( + ) and nodes
have weight ( ) if � , and zero otherwise. In the case of the path has to pass by
all the boarding nodes, while for this restriction does not hold. This problem is easily

solved by means of longest path algorithms; actually, paths may contain positive cycles, but the
problem reduces to a classical maximum length path on a suitable space-time network [6].

Since all the problems considered so far can be viewed as a particular ,
classical heuristics are suitable to approach them. In particular, we can devise several “insertion”

heuristics [9], where a tour is built from the basic one by iteratively inserting new optional stops
in order to satisfy more requests or reduce penalties. Insertion criteria may vary depending on
the transportation model.

Beside the aforementioned heuristics, another kind of appoach can be conceived. The pro-
posed algorithm exploits the particular structure of the problem and the information yielded by

the Lagrangian Relaxation or the Column Generation. in particular both methods yield a set
of “promising” paths. However, such a set can be suitably integrated by other methods. The

algorithm assembles paths in a greedy fashion, selecting them from the set of promising paths,
trying to build a maximum pro�t tour.

The approach, with minor modi�cations, is suitable for all the three models so far introduced
( , and ), and can be easily adapted to deal with the multiple tour cases.

The algorithm can be summarized as follows. Consider a set of paths = , where
corresponds to the set of promising paths of segment . Let the basic tour � made by the basic
paths � be the starting solution. The algorithm iteratively improves the value of the current

feasible tour by swapping basic paths in with paths in according to a greedy criterion. At
each step, the path with respect to the current tour is selected and removed

from ; the meaning of most promising path depends on the kind of transportation model,
as we will see later on. Let be the segment of such a path, then the algorithm

of the new tour obtained from by swapping the selected path with � . If feasibile,
is updated by removing all paths in , so that the selected path will belong to the �nal

solution. The algorithm stops when becomes empty.
Two issues must be addressed in order to implement this procedure: how to check the

feasibility of the tour yielded by the swapping, and the criteria according to which paths are
selected.

Regarding the feasibility check of the new tour , note that the path relative to segment

, denoted by ( ), can be thoroughly characterized by the following information: the earliest
departure time ( ), the latest departure time ( ), the earliest arrival time ( ), and the

latest arrival time ( ), which can be iteratively computed according to:

( ( )) =
if = 1

max ( ( )) + ( ( )) if = 2 ;

( ( )) =
min ( ( )) ; if = ;
min ( ( )) ( ( )) if = 1 1
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7 On-line approaches

h h h

n h h

h h

h h h h

h h h

n

h

n

h h

n

h

h

h

l l l

l l

l

h h h

h

h

h l

h

eat edt

lat ldt

ldt eat

das2 das3

das1

edt

ldt eat lat

das1

p q p q � p q h , . . . , n

p q p q � p q h , . . . , n.

� P

� p q p q , a .

p P p � p �

P s p
p

q

p
w p p

n

p

p
q

q � p, p p p
p

p

u q c q � p, p c p q

q

p P s p l h
p � p �

� p, p c p s p
p p

p

p p P p q
h h, p q h h

. h

�
P p

P

( ( )) = ( ( )) + ( ( )) = 1 ; (58)

( ( )) = ( ( )) + ( ( )) = 1 (59)

Let be the maximum travel time for paths in in order to qualify for swapping.

= ( ( )) max ( ( ))

Therefore, a path can be swapped with � only if ( )

Regarding the path selection criteria, paths in may be ranked according to a score ( )
that is a measure of the bene�ts coming from including path in the �nal solution, with respect
to the current solution .

Relatively to models and , the contribution of path is given exactly by the
( ) which, by de�nition, gives the gain obtained by swapping the basic path with .

Note that the score does not depend on the other 1 paths of the tour.
On the other hand, in the case of model , the score of a path does depend on the other

paths in the tour, in particular the bene�t of a request whose alighting node is in contributes to
the value of the solution only provided that the tour passes by the boarding node (and viceversa).

Therefore, unlike the previous case, the score of path varies according to the current solution
.

Let us restate the pro�t of tour in terms of pairs of paths. Let ( ), with and in
di�erent segments, be the bene�t of all requests having the boarding node in and the alighting
node in or vice versa. Then

( ) ( ) = ( ) ( ( )) (60)

but, with respect to the current solution , only the paths resulting from a swap are known to
belong to the �nal solution.

Given the score ( ) can be computed as follows. For each segment = for which
a path has not been already selected, the path such that ( ) and which maximizes

( ) ( ) is considered. The score ( ) corresponds to the pro�t of the tour given by the
selected paths, path , and all paths according to (60). Note that this tour may not be

feasible, therefore the score is an upper bound of the pro�t of any tour containing and the
paths already selected.

Note that, after any successful swapping of � with , ( ( )) must be updated
for all ( ( )) must be updated for all , while and are recomputed
according to (58) and (59), respectively As a consequence, for each segment for which a path

has not been already selected, may have been decreased, thus reducing the cardinality of set
. In case of model more updating is necessary since some paths may not belong to

any more, and the scores of some nodes may have to change.

The ideal and more realistic service in low demand conditions is an service, where requests
can arrive also during the service duty of the vehicle. We may assume that some basic rules
characterize an on-line service:

once a request has been accepted, it cannot be discarded;
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once a service has been determined for a request (pick up stop, drop o� stop, tour which
it has assigned to), it cannot be modi�ed or in general worsened;

the service request reservations must be processed in a �rst—come—�rst—serve fashion;

the service request reservation must be con�rmed (i.e. accepted, rejected or modi�ed

proposing alternative pick up and/or drop o� stops, and tour of assignment) in .

Actually, these rules simplify the optimization problem that must be solved each time a
request is issued, since the number of feasible alternatives to the current solution is much smaller

with respect to the o�-line case. Let us briey discuss how the solution approaches to ,
and change under the on-line perspective. Assume that the current established feasible

tour is and a new service request arrives asking to be served starting from the current instant
of time, and the vehicle has not passed by the desired boarding stop.

In the framework, the problem is to decide whether ( ) and ( ) can be included in
, if not already present, maintaining the feasibility. There are two possible approaches:

recomputing a new optimal tour including ( ) and ( ), and if a feasible solution is

found, is accepted and is the new current tour; the request is rejected, otherwise.

heuristically evaluating if ( ) and ( ) can be inserted into . If the answer is negative,
the request is discarded even though there is not theoretical evidence that no feasible tour
including exists. If the answer is positive, the current tour can be re�ned after having

con�rmed the acceptance of the request.

Another possible way to implement a real time answer to service requests, is to store a set of

good feasible solutions in a data base and e�ciently retrieve the best among the available ones.
In the case, the problem is slightly more delicate as it has to be decided whether the

insertion of ( ) into is feasible, and whether it is more pro�table to insert ( ) into or to pay
a penalty ( ). Also in this case there are two possible approaches. The exact one computes
the optimal tour, the heuristical one evaluates the feasibility of the possible insertion of ( )

and the feasibility/pro�tability of the possible insertion of ( ). In the heuristical approach the
evaluation can be followed by a re�ning phase where the optimal tour is recomputed exactly, or

with more accuracy.
In the case, the problem is simply to evaluate the pro�tability of making a detour for

boarding and/or alighting request . This can be done by applying the same ideas seen in the
case of .

The , , and systems in the on line case can be approached very simply.
Provided that it is not reasonable to serve a request with more than one tour of delay with

respect to the ideal one, it is su�cient to the circuit line twice. That is the planning
horizon is of two circuits instead of one. This unrolling can be dynamically updated as segments
are visited by the vehicle.

The on-line approach requires a quite heavy technological support: vehicle monitoring systems,
communication system between the service management center and the vehicles, and between

the stops and the service management center. Often, in a preliminary testing phase, a cheaper
system with less technological requirements is highly desirable, even though it can not implement

all the features of the on-line service described above. Let us consider a possible hybrid on-line
system. In such a system, requests can arrive during the vehicles are operating, but the itinerary
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8 Conclusions and future work

of each vehicle is determined on the basis of the data available at the beginning of the tour, and
can not be modi�ed while the vehicle is running. In practice, the service management has to

solve a sequence of single tour problems, (( 1) or ( 2) or ( 3) according to the system selected)
just before the vehicle leaves the terminal. The problems are solved using the service requests

collected while the vehicle is performing the current tour and those that could not be previously
served. In order to avoid a request being inde�nitely hold on, a suitable priority mechanism has

to be introduced, such that in the solution of a single tour problem older requests have better
chances to be served.

In this chapter we presented a new transit model identi�ed as Demand Adaptive System. The
system can be seen as a hybrid solution between a conventional line transit and an on-demand

personalized transportation. This solution should combine the advantages of the two systems:
the low costs and the reliability of a line transit on one side, and the exibility and the capability

of attracting users of a personalized transportation service on the other side. In the frame-
work we proposed several transportation models that are characterized by the di�erent ways of
managing the service requests. For each model we proposed a mathematical formulation and

solution techniques in the case of single line systems.
A transportation system like the one proposed has several interesting aspects, especially

nowadays. The transportation companies can implement the to improve the e�ciency and
maintain or even enhance the service level. This point appears more and more critical.

Techological improvements should require:

network vehicle monitoring system,

communication systems between vehicles, users and managing center,

e�cient and clear information system for the users.

Indeed many of these systems have been already implemented and are currently adopted by

many transit companies.
However, if these system are not already implemented, less requiring solutions can be also

considered. In fact the hybrid or the o� line models do not require an exact location of the vehi-
cles on the network, and can rely on the telephone network (�x or cellular) for communications

between the users, the vehicles and the managing center.
From the mathematical and algorithmic viewpoint the proposed model put a new light on

how approach a transportation problem. We believe that this kind of transportation systems
deserve to be studied and tested in practice in the near future.

The preliminary computational results regarding the o� line models [4] are encouraging.

Some test problems have been generated in order to reproduce possible urban settings with up
to 10 segments, a number of stops ranging from 25 to 140, and a number of requests ranging from

40 to 190. The proposed relaxation gives a solution in a reasonable time (order of minutes of a
medium sized workstation), and its quality is acceptable even for large instances. The value of the

relaxation favorably compares with that of the trivial linear programming relaxation obtained
by relaxing the integrality constraints and by solving the problem by means of standard LP

codes. In fact the linear relaxation is usually quite poor, while the Lagrangean Relaxation is
always more tight. The heuristic algorithms proposed produced the optimal solution in a very

short time for all the small instances, where it has been possible to compute the optimal solution
with a branch and bound. For larger instances the value of the heuristic solution is not far from
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the upper bound given by the relaxation. The implementation of all the proposed algorithms
does not require any particular computational platform (an up to date PC is su�cient) nor any

particular commercial software.
Model extensions should deal with a system with multiple . When the lines share some

stops (both compulsory and optional) two levels of problems arise. One passenger may ask to be
transported from an optional stop of one line to an optional stop of another line. First of all, the

system has to decide where to allow the passenger to transfer from one line to another. Moreover,
it is necessary to enforce the synchronization of the vehicles involved by the transfers. All those

ideas may introduce some challenging aspects from the mathematical viewpoint, especially when
the o�-line planning is considered. These aspects are currently under study.
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