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Abstract: The Quadratic Semi-Assignment Problem (QSAP) models a large
variety of practical applications. In the present note we will consider a
particular class of QSAP that can be solved by determining the maximum
cost flow on a network. This class of problems arises in schedule
synchronization and in transportation.
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1. Introduction

The Quadratic Semi-Assignment Problem (QSAP) has an important role in

modelling many practical applications. For example clustering and partitioning

problems [7], assignment of researchers to departments [6], some scheduling

problems [4]; moreover Weighted Max 2-Sat can be reduced trivially to the QSAP. In

general the QSAP is NP-hard [11], and in practice it is very difficult to provide the

optimal solution, even for problems of small size [8]. In [9, 10] a class of

polynomially solvable QSAP's is presented and it is exploited to devise lower

bounds for the general case.

In the present note, another class of polynomially solvable QSAP's will be

considered. This class arises for example from Schedule Synchronization Problem

(SSP): consider a set of interconnected flights, a communication network and a

departure time window for each flight, and let the estimated passenger flow at the

1 This work has been supported by "Progetto Finalizzato Trasporti 2", Italian National Reseach

Council, grant no. 93.01799.PF4.

2 e-mail: maluc@di.unipi.it



2

interconnections be known; the Schedule Synchronization Problem consists of

selecting the departure time for each flight within the given window, in order to

minimize the total waiting time spent for connecting. Often in the literature, the

various aspects of this problem have been considered separately. For a brief review

refer to [12]. Recently global approaches to the problem have been proposed in the

mass transit context ([5, 12]). The common and more natural approach is the use of a

Quadratic Semi-Assignment model. We will see that, under quite reasonable

hypotheses, this kind of problem can be solved in polynomial time. This class of

easy QSAP's can arise also in the planning and improvement of regional mass transit

with resource constraints (see [3]).

In the following we will present the problem formulation in the most general form

giving some references to the SSP. Moreover we will devise a transformation that

allows to solve the problem by means of a standard network flow algorithm.

2. Problem formulation

Consider a convex bipartite graph G = (U, V, A), where the set of arcs A is a subset

of the Cartesian product of the origin node set U and the destination node set V.

Assuming that V is totally ordered, we say that G is convex when for each iÎU, h,

kÎV, h£k, the following implication holds:
(i,h)ÎA  and (i,k)ÎA    Þ   (i,l)ÎA "lÎV, h£l£k.

This means that, for each origin i, the set of arcs incident with i can be described by

the a pair of nodes ai and bi of V, where ai and bi represent the first and the last

destination adjacent to origin i. Further on, we will assume that the origin and

destination nodes are represented by the integers from 1 to |U| and |V|, respectively.

The problem of recognizing convex bipartite graphs has been dealt with in [2],

where a linear time algorithm is proposed.

Consider the following QSAP defined on a convex bipartite graph:
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min  å
ijÎU

ÊÊÊ å
hkÎ V

Êqihjk xihxjk

å
hÎ {ai..bi}

Êxih = 1, "iÎU, (2.1)

xih Î{0, 1} "iÎU, "hÎV.

Obviously, decision variable xih=1 if and only if origin i is assigned to destination h,

and zero otherwise. The constraints of the problem state that each origin must be

assigned to exactly one destination.

Let the quadratic coefficients be defined as follows:

qihjk = 
 îï
í
ïìMpij ifÊk-h<rij,
pij(k-h-rij) otherwise, (2.2)

where M is a suitably large scalar (for example M>|U|2|V| max{pij: i,jÎU}), and rij  are

integer coefficients, for each i,ÊjÊÎU.

Problem (2.1), with costs defined by (2.2), has an immediate interpretation in terms

of schedule synchronization. The origins represent the flights and the destinations

represent the possible departure times; hence {ai..bi} is the time window of feasible

departure times for flight i. Coefficient pij represents the estimated amount of

passengers that connect flight i with flight j, while coefficient rij denotes the travel

time of flight i (note that, actually in the case of SSP, rij does not depend on j). If two

flights are not in connection (i.e. i arrives after that j has left, that is h+rij>k) and pij>0

then a penalty results in the objective function, otherwise there is a contribution

equal to the waiting time multiplied by the number of passengers.

Let us define the following transformation of the problem; we introduce new

variables and substitute them to the 0-1 variables:
pi = å

hÎ {ai..bi}
Êhxih "iÎU.

In practice, in the case of SSP, variable pi gives the departure time of flight i.

If we express the penalties of the objective function as explicit constraints, we get the

following formulation:
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min å
ij

Êpij(pj-pi-rij)

pj-pi ³ rij "i,jÎU s. t. pij>0,
ai £ pi £ bi "iÎU, (2.3)
pi Î Z+.

It is easy to see that problem (2.3) has solution if and only if the optimal solution of

problem (2.1) does not induce any penalty, that is the optimal solution value is less

than M, and in this case the two problems are equivalent.

The LP relaxation of problem (2.3) can be written as follows:
-å

ij
Êpijrij + min å

i
Êå

j
Ê(pji - pij)pi

pj-pi ³ rij "i,j ÎU s. t. pij>0, (2.4)
pi ³ ai "iÎU,
-pi ³ -bi "iÎU.

Let us call ti = å
j

Ê(pji - pij), "iÎU, K=-å
ij

Êpijrij, and introduce a dummy variable ps,

then (2.4) can be written equivalently as follows:
K + min å

i
Êti p i

pj-pi ³ rij "i,j ÎU s. t. pij>0 (2.5)
pi  - ps ³ ai "iÎU
ps -pi ³ -bi "iÎU.

Problem (2.5) is a potential problem on a network G'=(N,A'), where the node set N

is given by UÈ{s} and the arc set A' = {(i,j): i,j ÎU,  pij>0} È {(s,i): iÎU} È {(i,s):ÊiÎU}.

The constraints matrix of problem (2.5) is totally unimodular. Due to integrality of

coefficients rij, ai  and bi, and to totally unimodularity, any optimal basic solution p*

of problem (2.5) is integer and gives the optimal solution of (2.3); consequently, it

gives also the solution to the original QSAP, if the value of the optimal solution is

less than M . Solution p* can be found in polynomial time by means of linear

programming. Hence we can state the following theorem.

Theorem 2.1

Any QSAP defined on a convex bipartite graph with cost given by (2.2) can be

solved in polynomial time, if the value of the optimal solution is less than M.
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Note that if the QSAP has a solution which includes some penalties the

corresponding potential problem (2.5) is infeasible.

Problem (2.5) can be solved very efficiently by means of a standard network flow

algorithm [1]. In fact the dual of (2.5) is
max å

ijÎU
Êrijyij + å

iÎU
Êaiysi - å

iÎU
Êbiyit

Ey  = t, (2.6)
y ³ 0,

where E is the node/arc incidence matrix relative to graph G', arcs do not have

capacities, the cost of one arc (i,j)ÎA' is given by rij, if i,j ÎU, aj if i=s,  and -bi if j=s,

and the demand of flow at node i  is equal to ti  if iÎU, and zero if i=s.

3. Conclusions

In the present note we showed that a particular class of QSAP's defined on convex

bipartite graphs can be solved in polynomial time. The idea is based on a simple

transformation into a network flow problem whose size is a linear function of the

size of the original QSAP. This class of problems has relevant application in practical

cases as the SSP and some other transportation problems. As the usual size of those

problem is quite large, it is important to have very efficient methods to find the

optimal solution.
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