
September 28, 2000

The Dominating Set Problem
on Shiftable Interval Graphs

Federico Malucelli Sara Nicoloso Paola Bonfiglio
Politecnico di Milano IASIÐCNR Universit� di Roma

Dipartimento di Elettronica ÒLa SapienzaÓ
e Informazione Viale Manzoni, 30 Dipartimento di
Via Ponzio 34/5 00185 Roma, Italy Informatica e Sistemistica

20133 Milano, Italy
malucell@elet.polimi.it nicoloso@iasi.rm.cnr.it

Abstract: In this paper the problem of computing a minimum dominating
set of a Shiftable Interval Graph (SIG) is studied. SIG's can be considered a
generalization of interval graphs, in the sense that a SIG identifies a whole
family of interval graphs. An optimization problem defined on a SIG
consists in determining an interval graph of the family which optimizes
the value of the chosen measure. In this paper, in particular, we studied
the problem of minimizing the cardinality d(S) of a dominating set. The
problem is formally stated, its strong NP-completeness is proved, and
upper and lower bounds for d(S) are discussed. Special cases solvable at
optimality are characterized. Several algorithms are proposed to solve the
problem on arbitrary SIG's, and are tested on 220 randomly chosen
problem and on five ad hoc designed examples which emphasize the
differences among the proposed algorithms.

1. Introduction

In this paper the problem of computing the dominating set of a Shiftable Interval
Graph (SIG, for short) is studied. A SIG S is a set of n triples tiÊ=Ê<li,ri,li> of non-
negative integer numbers satisfying 0Ê<ÊliÊ£ÊriÊÐÊli, i.e. SÊ=Ê{tiÊ=Ê<li,ri,li>ÊÎ ÊZ3+ :
0Ê<ÊliÊ£ÊriÊÐÊli, for iÊ=Ê1, É, n}. The pair [li,ri] will be called window wi , and li will be
called the length of the interval i associated with window wi. In fact, it is easy to think
of a SIG as a set of intervals each of which is to be placed within the corresponding
window, i.e. such that the left (right, respectively) endpoint of the ith interval does
not lay on the left of li (on the right of ri, respectively). The exact position of each
interval within its window is easily described by means of a placement vector
jÊ=Ê[j1,Êj2, É,Êjn], whose jth component represents the distance between the left
endpoint of the jth interval and the left endpoint of the corresponding window wj. jÊis
feasible if 0Ê£ÊjjÊ£ÊrjÊÐÊljÊÐÊlj for all j. Thus, once jj has been fixed to assume value Ðjj ,

2

the coordinate of the left and right endpoints of the jth interval are given by ljÊ+Ê Ðjj
and ljÊ+Ê Ðjj Ê+Êlj, respectively. Unless stated otherwise, we shall limit ourselves to
feasible j's only.

For the sake of shortness, in what follows, the pair (ti,
Ðj i) will represent the

interval
[liÊ+Ê Ðji ,liÊ+Ê Ðji Ê+Êli]. By interval model M(Ðj) we shall indicate the set M(Ðj)Ê=Ê{(t1,

Ðj1),
(t2,

Ðj2), É,(tn, Ðjn)}, which is, in fact, a set of intervals of the real line.
The intersection graph G(j) of the intervals in M(j) is, clearly, an interval graph,

thus a perfect graph. The set of all interval graphs G(j) obtained by varying j in all
possible (feasible) ways is called the family FS associated with the given SIG S. Notice
that different values of j, hence different interval models, may give rise to identical
interval graphs.

A minimization (maximization, respectively) problem on a SIG S is defined as
follows:

Given: a SIG SÊ=Ê{tiÊ=Ê<li,ri,li>ÊÎÊZ3+ : riÊÐÊliÊ³ÊliÊ>Ê0, and iÊ=Ê1, É,
n} and a function f:ÊFSÊ®ÊZ+,

Find: a graph G(j)ÊÎÊFS,
Such That: f(G(j)) is minimum (maximum, resp.).

In other words, an optimization problem on a SIG S consists in individuating a
placement j such that f(G(j)) attains its optimum value on the corresponding
interval graph G(j)ÊÎÊFS.

If f is defined as a maxÐtype function itself, a minimization problem on a SIG S
turns out to be a minÐmax problem. By similar reasonings we obtain minÐmin, maxÐ
min, and maxÐmax problems. This happens, for example, when f is defined as the
clique number or the stability number of G. In what follows, we shall refer to these
objective functions as w(S) and a(S), respectively.

SIG's have been introduced very recently. In [10] the close relation among SIG's
and the Scheduling problems are discussed. The state of the art of optimization
problems like minÊw(S), maxÊw(S), minÊa(S), maxÊa (S) is broadly dealt with.

In this paper we study the minimization problem obtained defining f as the size
|DG(j)| of a minimum dominating set DG(j) of G(j)ÊÎÊFS. In other words, we want to
find a placement vector j* such that G(j*) verifies|DG(j*)|Ê=Êmin

GÊÎÊFS
 ÊÊ{|DG(j)|}.

Solving the minimum dominating set problem is an easy task for interval graphs
in the unweighted case (i.e. minimum cardinality) as well as in the weighted case (i.e.
minimum node weight sum). It takes O(n+m) time, where n and m are the number of

3

nodes and edges of the given interval graph, respectively [1,5]. The time complexity
of finding the minimum independent dominating set, the minimum connected
dominating set, and the minimum total dominating set takes O(n+m) time as well,
both in node-weighted or unweighted interval graphs [1,4,9,12,13].

The paper is organized as follows: in Section 2 some preliminary definitions and
observations are dealt with; in Section 3 the problem is formally stated; in Section 4
its computational complexity is studied. Section 5 is devoted to study lower and
upper bounds on the objective function value. The remaining of the paper deals with
algorithms and special cases. In particular, Section 6 characterizes special cases which
can be solved at optimality by a simple greedy algorithm, in Section 7 several
algorithms for the general case are proposed, and in Section 8 the experimental
results obtained by running such algorithms on 220 randomly generated problems
are reported.

In the remaining of the paper we shall indifferently use the graph theoretic
terminology and the terminology related to the geometric aspect of the problem.

2. Preliminaries

This Section is devoted to discuss into details the relationship between the given SIG
S, the graphs of the family FS, the interval models which can arise, and the derived SIG
which we will be introduce in a while.

It is convenient to define the intersection graph HÊ=Ê(V,EH) of the set of windows
[li,ri] for all tiÊÎ ÊS: the nodes of Vare in oneÐtoÐone correspondence with the
windows of the given SIG, and an egde connects two nodes u,v iff the windows of
the corresponding triples do have nonÐempty intersection. Clearly, H is an interval
graph [8]. To this regard, it is important to recall the fundamental consecutive clique
arrangement property of interval graphs. Throughout the paper, clique will denote a
set of nodes inducing a complete subgraph, maximal w.r.t. node addition:

Theorem 1: [7] A graph G is an interval graph if and only if the cliques of G can be
linearly ordered such that for every vertex x the cliques containing x occur
consecutively.

We now observe the following:

Observation 2: Any (interval) graph G Ê=Ê(V ,EG)ÊÎ ÊFS is a partial subgraph of
HÊ=Ê(V,EH), in the sense that EGÊÍÊEH.

4

The following Figure shows that not all partial subgraphs of H are interval graphs,
nor that any partial interval subgraph of H belongs to FS, being SÊ=Ê{t1=<1,7,4>,
t2=<3,13,3>, t3=<2,7,1>, t4=<4,6,1>, t5=<8,12,2>}.

1
2

3
4

5

1 2

3

4 5
1 2

3

4 5
1 2

3

4 5

(a) (b) (c) (d)

Fig. 1ÊÑÊ(a) a SIG and a feasible placement; (b) the graph H;
(c) a partial subgraph of H which is not an interval graph;

(d) a partial subgraph of H which is an interval graph but does not belong to FS.

It is worth defining what a strong or a weak edge of H is.

Definition 3: An edge (u,v)ÊÎÊEH is strong iff (u,v)ÊÎÊEGÊfor any GÊÎÊFS, (thick in Figure
1) .

Definition 4: An edge (u,v)ÊÎÊEH is weak iff there exists at least one graph GÊÎÊFS such
that (u,v)ÊÏÊEG.

Obviously, given any (weak) edge (u,v)ÊÎÊEH there always exists at least one graph
GÊÎÊFS such that (u,v)ÊÎÊEG.

From the above observations it follows that the family FS has a finite cardinality,
in fact |FS|Ê£Ê2|EH|Ê<Ê2n2. This is a peculiar property of SIG's, for they allow to map
an infinite number of interval models into the finite set FS. In fact, there are ¥n

interval models, as each ji may assume one out of an infinite number of values. A
different upper bound on |FS| can be proposed, which is |FS|Ê£ÊP

i=1

n Ê(riÊÐÊliÊÐÊliÊ+Ê1).
Throughout the rest of the paper, w.l.o.g., we shall always limit ourselves to integer
j: in fact, the family of the intersection graphs of all interval models M(j) for all
possible jÊÎÊZn+ coincides with FS, as li,Êri,Êand liÊare integers.

We now introduce some definitions:

Definition 5: A SIG is called degenerate if all edges of H are strong.

Notice that in this case one necessarily has |FS|Ê=Ê1 and (the unique) GÊÎÊFS is
isomorphic to H. In other words, in a degenerate SIG it does not matter where an
interval i is placed within its window wi, because it always intersects all the intervals
whose window intersects window wi.

Here are some examples of degenerate SIG's:

5

(1)ÊÐÊwhen liÊ=ÊriÊÐÊli for all tiÊÎÊS;
(2)ÊÐÊwhen given any two triples tu,tvÊÎÊS one has that

(i) luÊ£ÊlvÊ£ÊruÊ£Êrv implies luÊ+ÊluÊ³ÊrvÊÐÊlv
(ii) luÊ£ÊlvÊ<ÊrvÊ£Êru implies both luÊ+ÊluÊ³ÊrvÊÐÊlv and lvÊ+ÊlvÊ³ÊruÊÐÊlu;

(3)ÊÐÊwhen liÊ³ÊriÊÐÊliÊÐÊk, for any tiÊÎÊS, for a fixed kÊ³Ê0, and for any two triples
tu,tvÊÎÊS one has that:
(i) luÊ£ÊlvÊ£ÊruÊ£Êrv implies ruÊÐÊlvÊ³Ê2k
(ii) luÊ£ÊlvÊ<ÊrvÊ£Êru implies both ruÊÐÊlvÊ³Ê2k and rvÊÐÊluÊ³Ê2k.

Proper interval graphs, also known as unit interval graphs [8], are the intersection
graphs of a set of intervals none of which properly contains another one (a window
wi properly contains another window wj if liÊ£Êlj and rjÊ£Êri, and at least one of the
two expressions holds as a strict inequality). Unit interval graphs are also
characterized by the absence of K1,3 as induced subgraph.

Definition 6: A SIG S is proper iff H is a proper interval graph.

Definition 7: A SIG S is a (0,1)ÐSIG iff liÊ³ÊriÊÐÊliÊÐÊ1, for any iÊ=Ê1, É, n.

Notice that in a (0,1)ÐSIG every interval can assume either one of at most 2 positions,
that is jiÊÎÊ{0,1} for all iÊ=Ê1, É, n. In this case most edges are strong, and in particular
all edges are strong, that is, the (0,1)ÐSIG is degenerate, if every pair i,j of mutually
i n t e r s e c t i n g w i n d o w s s a t i s f i e s
minÊ{ri,rj}ÊÐÊmaxÊ{li,lj}Ê³Ê2.

A certain subSIG of the given SIG S plays a very important role in many
situations. We define it as follows:

Definition 8: The derived SIG Sd associated to the given SIG S is obtained by
removing from S all triples whose window properly contains another window of S.

Notice that, clearly, a derived SIG is proper. Moreover, the intersection graph Hd of
the set of windows in Sd is an induced subgraph of H. Notice also that of course,
SdÊ=ÊS iff S is proper, and that every graph GÊÎÊFSd is a partial subgraph of H.

3. Problem definition

In this Section we shall give a formal definition of the DOMINATING SET problem ON
SIG's (DSS, for short).

6

Definition 9: Given an arbitrary graph FÊ=Ê(VF,EF) a subset of nodes DFÊÊÍÊVF is a
dominating set iff for any uÊÎÊVF\DF there exists a vÊÎÊDF such that edge (u,v)ÊÎÊEF,

DOMINATING SET problem ON SIG's:

Given: a SIG S Ê=Ê{tiÊ=Ê<li,ri,l i>ÊÎ ÊZ3+ : r iÊÐ Ê l iÊ³ Êl iÊ>Ê0, and
iÊ=Ê1,É,n}

Find: placement jÐ

Such That: a minimum dominating set DG(jÐ) on the interval graph
G(jÐ) satisfies |DG(jÐ)|Ê=Ê min

FÊÎÊFS

 ÊÊ{|DF|}.

In what follows, D(S) and d(S)Ê=Ê|D(S)| will denote a minimum dominating set for
the given SIG S, and its cardinality, respectively.

4. Computational Complexity

In this Section we shall prove the NP-completeness of DSS. For this reason,
throughout the present Section we shall only refer to the decisional version of the
problem, whose formal statement is obtained by replacing into the problem
definition the requirement Ò|DG(jÐ)|Ê=Ê min

FÊÎÊFS

 ÊÊ{|DF|}Ó by Ò|DG(jÐ)|Ê£ÊdÓ, where
dÊ³Ê1 is a given integer.

Theorem 10: Problem DSS is NPÐcomplete in the strong sense.

Proof: DSS is immediately seen to be in NP. The reduction is from 3ÐPARTITION,
which is NPÐcomplete in the strong sense [6]. The formal statement of 3ÐPARTITION
is the following [6]: given a nonnegative integer B, and a finite set AÊ=Ê{a1,Êa2,ÊÉ,Êa3m}
of 3m integers such that B4 Ê<ÊaiÊ<ÊB2 , for iÊ=Ê1, É, 3m, and such that å

aiÊÎÊA
 ÊaiÊ=ÊmB, find a

partition of A into (exactly) m disjoint sets A1,ÊA2,ÊÉ,ÊAm such that å
aiÊÎÊAj

 ÊaiÊ=ÊB for all
jÊ=Ê1, É, m (in order to avoid some trivial cases assume BÊ³Ê6). Notice that by the
preceding hypothesis it follows that every set has exactly 3 elements. From a given
instance of 3ÐPARTITION construct the following instance of DSS. d is set to 3m and
the triple set S is the union of two sets S1 and S2, where S1Ê=Ê{tiÊ=Ê(0,Êm(B+7)Ð1,Êai): for
iÊ=Ê1, É, 3m} and S2Ê=Ê{tjÊ=Ê(j,Êj+1,Ê1): for jÊ=Ê0, É, m(B+7)Ð2, with jÊ¹Êk(B+7)Ð1 for kÊ=Ê1,
É, mÐ1}. In what follows, the windows and intervals of triples in S1 will be called
large, and the windows and intervals of triples in S2 will be called small. In other
words, S2 consists of m sequences of B+6 unit windows with corresponding unit
length intervals, each sequence being separated by the following one by a unit space

7

(jump), while S1 consists of 3m large windows within each of which an interval of
length ai is to be placed. Notice that each large window properly contains all the
small windows, and the only feasible placement for all small intervals s is jsÊ=Ê0. We
claim that a feasible solution for DSS exists, that is a dominating set for the given SIG
S of cardinality not larger than dÊ=Ê3m, if and only if a partition with the required
properties exists for 3ÐPARTITION. The IF part follows immediately by observing that
a dominating set with cardinality dÊ=Ê3m is easily obtained from a (feasible) solution
AjÊ=Ê{aj1,aj2,aj3}, with jÊ=Ê1, É, m , for 3ÐPARTITION, by setting jsÊ=Ê0 for all small
intervals, and by setting j j1Ê=Ê(jÐ1)(B+7)+1, j j2Ê=Ê(jÐ1)(B+7)+aj1+3, j j3Ê=Ê(jÐ
1)(B+7)+aj1+aj2+5 for all jÊ=Ê1, É, m. Let us prove the ONLY IF part. We shall say that
the ith large interval is nicely placed if ji is such that no jump is contained in [ji,Êji+ai]
and there are two small windows ws,Êwt such that rsÊ=Êji, and ltÊ=Êji+ai. It is easy to
see that the ith large interval may dominate up to ai+2 small windows, such
maximum value being achieved if and only if it is nicely placed. Since the assumed
hypothesis BÊ³Ê6 implies aiÊ>Ê1 for all iÊ=Ê1, É, 3m, it is immediate to see that any
dominating set of cardinality not larger than 3m is made of all large intervals, only,
and all of them are nicely placed. More precisely, notice that for the same reason no
dominating set for S exists with cardinality strictly less than 3m. The facts that all
large intervals are nicely placed and that B4 Ê<ÊaiÊ<ÊB2 , for iÊ=Ê1, É, 3m, implies that the
small intervals of a same sequence are dominated by exactly three large intervals.
The corresponding 3ÐPARTITION is obtained by inserting into the same subset Aj the
three intervals which dominate the small windows of the jth sequence. Since the
reduction from 3ÐPARTITION to DSS is pseudopolynomial, the result is proved. o

5. Lower and Upper Bounds

Motivated by the preceding result we here state lower and upper bounds to the
cardinality d(S) of a minimum dominating set for the given SIG S.

5.1. Lower Bound

Lemma 11: Given a SIG S one has

|DH|Ê£Ê|DG|, for any GÊÎÊFS.

Proof: Let AdjF(K) denote the set of nodes adjacent to at least one node of the subset
K ÊÍ ÊVF in a graph FÊ=Ê(VF,EF). The claimed thesis follows immediately: in fact

8

AdjG(K)ÊÍÊAdjH(K), as EGÊÍÊEH.
o

Clearly, if S is a degenerate SIG, the above relation holds with the equality sign.
From the above Lemma immediately follows that

Theorem 12: Given a SIG S one has

|DH|Ê£Êd(S).

5.2. Upper Bound

In this Section we propose an upper bound to d(S).

Lemma 13: Given a SIG S one has

|DG|Ê£Êa(H), for any GÊÎÊFS.

Proof: Let KÊ=Ê{K1,ÊK2,ÊÉ,ÊK|K|} be a minimum cardinality covering by cliques of the
node set V of interval graph H (i.e., |K|Ê=Êk(H), where k(H) is the clique cover
number of H). W.l.o.g. assume that a consecutive clique arrangement
<K1,ÊK2,ÊÉ,ÊK|K|> is given, and let p(Ki) be the rightmost coordinate such that
{wtÊ:ÊltÊ£Êp(Ki)Ê£Êrt}Ê=ÊKi. Take any two consecutive cliques Ki,Ki+1. By the maximality
of each single clique it follows that there exists (at least) a node vji belonging to Ki but
not belonging to Ki+1. Consider the jith interval and place it in such a way that it
contains coordinate p(Ki), that is choose jji such that ljiÊ+ÊjjiÊ£Êp(Ki)Ê£ÊljiÊ+ÊjjiÊ+Êlji, for
iÊ=Ê1, É, |K|. The set J of all intervals ji's for iÊ=Ê1, É, |K| is clearly a dominating set
for some GÊÎÊFS. Since |DG|Ê£Ê|J|Ê=Êk(H), and k(H)Ê=Êa(H), as H is a perfect graph,
the claimed thesis follows. o

From the above Lemma we immediately derive the following:

Theorem 14 : Given a SIG S one has

d(S)Ê£Êa(H).

A different upper bound can be obtained by relating the cardinality of a minimum
dominating set of S to the cardinality of a minimum dominating set of the derived
SIG Sd.

Theorem 15: Given a SIG S one has

9

d(S)Ê£Êd(Sd).

Proof: Consider a triple tuÊÎÊS\Sd. By definition of derived SIG Sd, there exists (at
least) a triple tvÊÎ ÊSd whose window is properly contained into window u. If
(tv,jv)ÊÎÊD(Sd), for some jv, we are done. If (tv,jv)ÊÏÊD(Sd), consider a (tz,jz)ÊÎÊD(Sd)
which dominates tv, that is either lvÊ£Êlz+jzÊ£Êrv or lvÊ£Êlz+jz+lzÊ£Êrv or both. Since
luÊ£Êlv and rvÊ£Êru, the triple tz clearly dominates also tu. o

The importance of this Theorem lays in the fact that problem DSS can be solved at
optimality on Sd, in fact it is a proper SIG (see next Section).

It can also be proved that

Theorem 16: Given a SIG S one has

d(Sd)Ê£Êa(H).
In order to prove the theorem above we need the following

Lemma 17: Given a SIG S one has

a(Hd)Ê=Êa(H).

Proof: Let A be an independent set of H with maximum cardinality, that is
|A|Ê=Êa(H). Consider AÊÍÊV(Hd). Then A is an independent set for Hd, and of course
a(Hd) =Êa(H), as Hd is an induced subgraph of H . Consider AÊÊ/Í ÊV (H d) and be
xÊÎÊA\V(Hd). Let Adj(v) denote the set of vertices adjacent to a vertex v in H and v
itself. We claim that among the vertices adjacent to x in H there exists one, call it y,
such that yÊÎÊV(Hd) and Adj(y)ÊÍÊAdj(x). This follows from the fact that there exists a
window wy properly contained into window wx. Thus A\{x}ÊÈÊ{y} keeps being a
maximum cardinality independent set for H. o

Proof of Theorem 16: By Theorem 14, d(Sd)Ê£Êa(Hd). By Lemma 17, a(Hd)Ê=Êa(H),
and the claimed thesis follows. o

6. Special cases solvable at optimality

This Section is devoted to study special cases solvable at optimality by a simple
greedy approach. We shall first describe Algorithm G and then characterize the
special classes of SIG's on which it finds the optimal solution. For the sake of
simplicity we shall describe the algorithm on the interval model of the windows,

10

each time suitably positioning the corresponding interval (in the algorithm tiÊÎÊS\D
is an improper writing for tiÊÎÊS\{tj: (tj,jj)ÊÎÊD}).

ALGORITHM G:
Input: a SIG S=Ê{tiÊ=Ê<li,ri,li>ÊÎÊZ3+ : riÊÐÊliÊ³ÊliÊ>Ê0, and iÊ=Ê1,É,n};
Output: a feasible placement jand a subset D;
Initially all the windows are unmarked and the set D is empty.
Repeat

Consider the leftmost right endpoint p of an unmarked window of S\D ;
Let AÊ=Ê{i: liÊ£ÊpÊ£Êri, iÊÏÊD};
Set jiÊ=ÊminÊ{riÊÐÊliÊÐÊli,ÊpÊÐÊli} for all iÊÎÊA;

SELECTION PHASE:
Let jÊÎÊA be such that ljÊ+ÊjjÊ+ÊljÊ=Êmax{liÊ+ÊjiÊ+Êlj, for iÊÎÊA};

Insert j into D;
Mark all windows wi verifying liÊ£ÊljÊ+ÊjjÊ+Êlj ;

Until all windows are marked.

The algorithm produces a feasible placement j and a subset D of indices. The subset
D is a dominating set for the interval graph G(j). As for the algorithm behaviour we
notice what follows: (i) by setting j iÊ=ÊminÊ{riÊÐÊliÊÐÊl i,ÊpÊÐÊli} for all iÊÎÊA we are
actually placing each interval in the rightmost position within its window, so as to
make it cross p; (ii) the jj are usually set more than once until either j is inserted into
D or it does not belong to the current A anymore; (iii) at each iteration we insert into
the current set D the index of an interval with rightmost right endpoint.

The computational complexity of Algorithm G amounts to O(n2). In fact, in the
worst case the algorithm considers O(n) different subsets A, whose cardinality is
bounded by n, and the choice of j takes globally O(n2) throughout the whole
execution of the algorithm.

Algorithm G cannot guarantee to determine the optimal solution on arbitrary
SIG's since the problem is NP-Hard (Theorem 10), as it is shown in particular by the
example of Figure 2 where the solution output by Algorithm G (above) on the SIG
SÊ=Ê{t1=<3,4,1>, t2=<5,6,1>, t3=<7,8,1>, t4=<10,11,1>, t5=<12,13,1>, t6=<14,15,1>,
t7=<16,17,1>, t8=<1,9,3>, t9=<2,18,5>} and an optimum solution (below) on the same
SIG are drawn. The thin rectangles represent the intervals, and in particular the grey
ones are those in the dominating set.

1 2 3 4 5 6 7

8
9

11

1 2 3 4 5 6 7

8
9

Figure 2 Ð Solution output by Algorithm G (above) and an optimum solution (below).

However there are special cases solved at optimality by Algorithm G, as illustrated in
the following of the present section.

Definition 18: A SIG is good if throughout the execution of Algorithm G the current p
is greater than the right endpoint rj of the window corresponding to the last index
inserted into D.

Theorem 19: Let S be a good SIG. Then, the placement vector j output by Algorithm
G is an optimal solution of DSS.

Proof: By contradiction. Assume that there exists a placement j* such that a
minimum dominating set D(j*) on G(j*) has cardinality smaller than |D|. Let K, K*
denote the set of intervals corresponding to indices in D, D(j*) placed according to j,
j*, respectively. The proof consists in showing that taken any coordinate t the
number of intervals of K whose right endpoint lays on the left of t is never smaller
than the number of intervals of K* whose right endpoint lays on the left of the same
point t, the contradiction being found in the fact that D(j*) is not a dominating set
for G(j*). For the sake of simplicity we shall denote with l(s),Êr(s)Êthe left and right
endpoint of an interval sÊÎÊKÊÈÊK*, namely l(s)Ê=ÊlsÊ+Êjs and r(s)Ê=ÊlsÊ+ÊjsÊ+Êls.
Sort the intervals in K(K*, respectively) by non decreasing right endpoint, resulting in
the sequence x1Ê, É, Êx|K| (y1Ê, É, Êy|K*|). Let also wa be the window with leftmost
right endpoint ra in the given SIG. Consider x1 and y1, it must be the case that
l(x1),Êl(y1)Ê£Êra, otherwise node a would not be dominated contradicting the
hypothesis. Because of the algorithm behaviour, it is also the case that r(y1)Ê£Êr(x1).
Now consider the next pair x2, y2. We shall prove that r(y2)Ê£Êr(x2). Infact: after having
fixed the position of x1, the algorithm moves to the leftmost right endpoint rb of a
not-yet dominated window wb (thus r(x1)Ê<Êlb), and sets the placement j2 of x2,
resulting in l(x2)Ê£ÊrbÊ£Êr(x2). Notice that the algorithm chooses x2 in the set C(rb)Ê=Ê{i:
such that liÊ£ÊrbÊ£Êri}, which x1 does not belong to, as by hypothesis rbÊ>Êrx1. As
r(y1)Ê£Êr(x1), clearly, window wb is not dominated by y1. However there must exist
another interval in K* which dominates window wb. Indeed such interval must be y2

12

and one has l(y2)Ê£Êrb. If r(y2)Ê£Êrb, it is also r(y2) £ r(x2). If r(y2)Ê>Êrb then y2ÎC(rb), and
the result follows from the algorithm behaviour.
The reasoning can be repeated, always comparing the pair of intervals xi,Êyi, for
iÊ=Ê3Ê, É, Ê|K*|, concluding that r(y|K*|)Ê£Êr(x|K*|). Consider x|K*|+1. The placement
of this interval is set in order to dominate a not-yet dominated window wc, verifying
r(x|K*|)Ê<Êlc. This contradicts the hypothesis that K* is a dominating set, and the
claimed thesis follows. o

This Theorem, clearly, does not allow to know if Algorithm G will output an optimal
solution before running it. But, of course, it is a sufficient condition to prove the
optimality of the output solution. There are special SIG's which can be proved aÐpriori
to be good: on these SIG's we know that Algorithm G will output an optimal
solution. This happens, for example, for the proper SIG's.

Theorem 20: A proper SIG is good.

Proof: Let i be the last index inserted by the algorithm into the current D, and let j be
the index of window with leftmost right endpoint among the not yet marked (i.e.
dominated) ones. Then ljÊ>ÊliÊ+ÊjiÊ+Êli. Since, clearly, liÊ+ÊjiÊ+ÊliÊ³Êli, and the SIG is a
proper SIG, we may conclude that rjÊ>Êri, and the claimed thesis follows. o

Theorem 21: A (0,1)ÐSIG S is good.

Proof: Let i denote the last index inserted into the current D, and j be the index of an
unmarked window with leftmost right endpoint rj . One has: rjÊ>Êlj, by definition;
ljÊ³ÊliÊ+jiÊ+ÊliÊ+Ê1, as j is unmarked; liÊ+jiÊ+ÊliÊ+Ê1Ê³Êri, as S is a (0,1)ÐSIG. Since pÊ=Êrj,
the thesis follows. o

Theorem 22: A degenerate SIG S is good.

Proof: Let i denote the last index inserted into the current D, and j be the index of an
unmarked window with leftmost right endpoint rj (unmarked w.r.t. the current j
and D). One has: rjÊ>Êlj, by definition; ljÊ³ÊliÊ+jiÊ+ÊliÊ+Ê1, as j is unmarked; ljÊ>Êri, as S is
degenerate (in fact all edges are strong). Since pÊ=Êrj, the thesis follows o
In the last case problem DSS can be solved very easily. In fact it reduces to finding a
dominating set on H as any feasible placement j gives rise to the unique interval
graph belonging to FS={H}.

Algorithm G establishes the position of an interval of D within its window in a
greedy way, that is, as soon as the chosen interval is the best candidate to solve the

13

subproblem Òin the neighbor of pÓ. And, clearly, this may not be the right strategy
to optimize over the global problem.

7. General case

In this Section we shall discuss some algorithms for problem DSS on arbitrary SIG's,
which are more sophisticated than the greedy algorithm of Section 6.

7.1. Algorithm MEC

The first algorithm we discuss is the MEC algorithm (MEC=Minimal element of an
Equivalence Class). Its algorithmic scheme is quite similar to Algorithm G. It differs
from it in two facts only: the choice of coordinate p w.r.t. the current set D, and the
choice of which index j inserting into D.

p is chosen as the leftmost right endpoint of an unmarked window among those
belonging to the derived SIG Sd, only. In fact a dominated position for any interval u
such that tu Î S\Sd does always exist, whatever is the position of an interval whose
window is properly contained into window wu (see proof of theorem 15). In this
sense, u has a ÒpassiveÓ role in the domination. However, an interval u such that tu Î
S\Sd might play an ÒactiveÓ role in the domination, and this is why subset A is
constructed upon S, and not upon Sd only.

As for the choice of the element j to insert into D, the following SELECTION
PHASE of Algorithm G,

SELECTION PHASE:
Let jÊÎÊA be such that ljÊ+ÊjjÊ+ÊljÊ=Êmax{liÊ+ÊjiÊ+Êlj, for iÊÎÊA};

has to be replaced by the following instructions, where U i denotes the set of
unmarked windows which are dominated by interval i, placed according to ji;

SELECTION PHASE:
Let hÊÎÊA be such that lhÊ+ÊjhÊ+ÊlhÊ=Êmax{liÊ+ÊjiÊ+Êlj, for iÊÎÊA};
Compute Uh;
Let LÊ= {iÊÎÊA:ÊUi Ê=ÊUh};
Let QÊ=Êmin{ljÊ+ÊjjÊ+Êli, for iÊÎÊL};
Let jÊÎÊL be such that rjÊÊÐÊljÊ=Êmin{riÊÊÐÊli, for iÊÎÊL:ÊliÊ+ÊjjÊ+ÊljÊ=ÊQ};Ê

The MEC algorithm is better than Algorithm G in the fact that it individuates a sort of
Òequivalence classÓ for local optimality among whose elements it chooses a
ÒminimalÓ one to be inserted into D. In fact, the interval selected by Algorithm MEC
is one which dominates exactly the same set of windows dominated by the interval

14

selected by Algorithm G and whose window has minimum length. However, the
general strategy is still a greedy one, in the sense that an interval is chosen in a
subset all of whose elements give rise to a locally optimal solution.

The computational complexity of Algorithm MEC amounts to O(n2logn), which
corresponds to the complexity of selecting j for all O(n) different subsets A. In fact,
for a given A, the computation of h, Q, and j takes O(n), as well as the computation of
Uh assuming that the left and right endpoints are arranged in a segment tree.
{pre/s]. On the other hand the computation of L can be carried out in O(nlogn) time
if one observe that UiÊÍÊUl if liÊ+ÊjiÊ+ÊljÊ£ÊllÊ+ÊjlÊ+Êll. In fact, we first sort the elements
iÊÎÊA by non increasing value of liÊ+Êj iÊ+Êl j, then we determine the last i which
verifies UiÊ=ÊUh by performing a binary search.

 The numerical experiments have been conducted running two different version
of the algorithm, whose only difference consists in the direction chosen to scan the
problem. In particular, the one we presented scans the problem from left to right,
while the other one scans the problem from right to left.
 Examples can be constructed where both versions of the algorithm fail. In Figure 3,
the solutions output by the two versions of Algorithm MEC when applied to SIG
SÊ=Ê{t1=<2,3,1>, t2=<4,5,1>, t3=<6,7,1>, t4=<9,11,2>, t5=<12,13,1>, t6=<14,15,1>,
t7=<16,17,1>, t8=<19,20,1>, t9=<23,24,1>, t10=<1,25,5>}, while an optimum solution is
one where the 10th interval is placed so as to dominate t4,t5,t6,t7, all other triples being
dominated by themselves.

1 2 3 4 5 6 7

10

8 9

1 2 3 4 5 6 7

10

8 9

Figure 3 Ð Solution output by the left to right version of Algorithm MEC (above)
and solution output by the right to left version of Algorithm MEC(below).

In order to avoid that an element is inserted into D as soon as it is an optimal local
solution, we decided to design algorithms S1-MEC and S2-MEC.

15

7.2. Algorithm S1_MEC

Algorithm MEC places and inserts an element into the current dominating set as soon
as it turns out to be an element yielding a local optimum. However, it may be the
case that a better solution is found if the interval is placed on the right of the just
computed position. The algorithm discussed in the present section has been designed
in order to evaluate the effect of placing an interval in many different positions
within its windows. In order to do this, in Algorithm S1_MEC we consider the (linear)
problem as a cyclic problem in the sense that we first process the triples whose
windows lay on the right or cross a prespecified coordinate t and then we process
the remaining ones, and we go on step by step moving t more and more rightwards
until we reach the right end of the problem. At each step we run Algorithm MEC,
keeping track of the best current solution. By doing so, in some sense, we search the
solution space for different configurations of a feasible solution.

ALGORITHM S1_MEC:

tÊ:=Ê0;
DÊ:=Ê{1, É, n};
jiÊ:=Ê0, for iÊ=Ê1, É, n;
Repeat

tÊ:=ÊminÊ{rj: rjÊ>Êt and tjÊÎÊSd};
Let S'Ê=Ê{tiÊÎÊS: riÊ³Êt};
Run algorithm MEC on S', and let D',Êj' be the resulting solution;
If {tiÊÎÊSd: riÊ<Êt} is non empty
Then Begin

Mark all the windows dominated by some element in D';
Let S"Ê=Ê{tiÊÎÊS and not marked}ÊÈÊ{tiÊÎÊS\Sd and iÊÏÊD':ÊliÊ<ÊtÊ£Êri};
Run algorithm MEC on S" keeping track of the already marked windows;
Let D",Êj" be the resulting solution;
End

Else D"Ê=Ê¿;
If |D'ÊÈÊD"|Ê<Ê|D|
Then DÊ:=ÊD'ÊÈÊD";

Until tÊ=ÊmaxÊ{rj: tjÊÎÊSd}.

SIG's S' and S" are clearly subSIG's of S, and there are triples which belong to both of
them (most of the triples whose window crosses coordinate t), while S', S" do induce
a partition of the derived SIG Sd. Notice that in the first cycle S'Ê=ÊS and S" is empty.

The computational complexity of S1_MEC is O(n3logn), as the cycle is repeated at
most n times and in each cycle algorithm MEC is applied twice to SIG's whose size is
bounded by n.

16

In this case too, the numerical experiments were conducted running algorithm
S1ÐMEC in the present version, which scans the problem from left to right, and in a
mirrorÐversion, which scan the problem in the opposite direction, from right to left.

7.3. Algorithm S2_MEC

During the execution of algorithm S1_MEC, S" keeps growing at each cycle, but the
Òstarting pointÓ of algorithm MEC is always the left endpoint of the whole problem.
In order to further reduce this the effects of the greedy behaviour, we designed
algorithm S2ÐMEC. It simply consists in applying algorithm S1_MEC to the
subproblem S", instead of applying algorithm MEC to it. Clearly, three subsets are
derived from S , and still the leftmost one of them RISENTE DEL GREEDY
APPROACH. However, the numerical results and the fact that the computational
complexity was already large enough, suggested not to further subdivide the
problem.

The computational complexity of S2_MEC is O(n4logn), as the cycle is repeated at
most n times and in each cycle algorithm S1_MEC is applied to a SIG whose size is
bounded by n.

The numerical results reported in the next Section are the results of having
applied algorithm S2_MEC both in its leftÐtoÐright and in its rightÐtoÐleft versions.

7.4. Algorithm OLGA

We also designed OLGA (Optimum Local Greedy Algorithm), which is based on a
completely different approach to the problem. It starts with a feasible solution and
tries to decrease its cardinality until a (local) minimum is reached, maintaining
feasibility at each step.

D is initially chosen as the set of all indices whose triple belongs to Sd. This defines
a trivial solution: in fact the pair D, j defines a dominating set of S for any feasible
placement j. For each triple txÊÎÊS\Sd, and xÊÏÊD, let Qx(jx) = {iÎD: tiÎSd and [li,
ri]Ç[lx+jx, lx+jx+lx] ¹ Æ, and be qx(jx) its cardinality. At each iteration a tentative
placement j 'x , is determined so as to maximize qx(jx). An interval is selected which
attains the maximum over all qx(jx), say y, and it is inserted into D in place of Qy(jy).
The algorithm is formally described below:

17

ALGORITHM OLGA;

Let DÊ=Ê{i:ÊtiÊÎÊSd};
Repeat

For each triple txÊÎÊS\Sd and xÊÏÊD do
Let qx= max{qx(jx) for all feasible (jx)};

Let y be such that qyÊ=ÊmaxÊ{qx:ÊtxÊÎÊS\Sd and xÊÏÊD };
If qyÊ>Ê1
Then DÊ:= D\Qy(jy)ÊÈÊ{y}

Until |{i: iÊÎÊD and tiÎSd}|Ê³Ê2.

Notice that once the index y is inserted into D, it will not be considered any more,
which guarantees that the algorithm terminates in O(n) steps. The complexity of each
step amounts to O(n3Êlogn) performing a binary search on a segment tree [11].

We also designed another algorithm based on local improvements, which can be
applied both to the trivial solution and to the solutions output by the S1_MEC,
S2_MEC, and OLGA algorithms, but the computational results were not encouraging
[2]. However we noticed that it greatly improved the solution when applied to the
trivial solution , while it improved the solution output by OLGA on 4 cases over 200
only, and it could never improve the solution output by S1_MEC or S2_MEC. We
could design one example, only, where it outperformed all other algorithms (the
second one in Table 7). The execution time of this algorithm is often quite large
compared to the other algorithms.

8. Experimental results

We run the algorithms on 220 randomly generated test problems. Each test problem
is defined by a 4-uple TESTÊ=Ê(n,d,lmax,p), where n is the number of triples of S,
dÊ=ÊmaxÊ{ri:ÊtiÊÎ ÊS}ÊÐÊminÊ{li:ÊtiÊÎ ÊS}, lmax is an upper bound on the length of an
interval, and p is an upper bound on the ratio (riÊÐÊli)/lmax. In particular, in the first
step we randomly decide if we shall next generate a left or a right endpoint of a
window. If a left (right, respectively) endpoint of a window is to be generated, we
randomly choose a value 0Ê£ÊliÊ<Êd (0Ê<ÊriÊ£Ê100, resp.). Then, the interval length
liÊ£Êmin{lmax,dÐli} (liÊ£Êmin{lmax,ri}, resp.) is randomly generated, and finally the
right endpoint ri (left endpoint li,resp.) is randomly generated so as to verify
liÊ+ÊliÊ£ÊriÊ£Êmin{d,liÊ+Êplmax} (max{0,riÊÐÊplmax}Ê£ÊliÊ£ÊriÊÐÊli,resp.). The 4 parameters of
a TESTÊassumed values in the following sets: nÊÎÊ{20,40}, dÊÎÊ{50,100}, lmaxÊÎÊ{5,10},
and pÊÎ Ê{1.2,2,2.8,5,10}. For each fixed 4-uple TEST we generated 10 different
problems. The algorithms behaved on the very exact way on all TESTÊproblems. For
this reason we decided to show 4 tables, only, among the 20 ones we had at hand.

18

Tables 1 through 4 show the results obtained on the following problems
TESTÊ=Ê(40,100,5,2), TESTÊ=Ê(40,100,5,5), TESTÊ=Ê(20,100,5,2), TESTÊ=Ê(20,100,5,10).

In order to (possibly) emphasize the differences among the algorithms, by
observing the structure of 5 problems which were constructed ad hoc for this
purpose, we decided to test the algorithms on a second group of problems. Each
problem of this group is given by the union of two 4-uple T E S T, that is,
TEST'Ê=Ê(n,d,lmax,p)ÊÈÊ(n',d',lmax'ÊÊÊ ,p'). These group of problems is characterized by
having triples with small windows and interval lengths and triples with large
windows and interval lengths, in a relative sense. We tested the algorithm on 10
problems having TEST'Ê=Ê(35,100,2,1.5)ÊÈÊ(5,100,10,5) as characteristic tuple and on 10
problems having TEST'Ê=Ê(20,100,2,1.5)ÊÈÊ(20,100,10,5) as characteristic tuple; the
result we obtained are listed in Tables 5 and 6.

All the algorithms have been implemented with MATLAB on a PC 486DX 33Mhz.
In the tables below each column (but for the last element) reports the cardinality

of the dominating set output by the generic algorithm on each of the 10 instances of
the corresponding TEST, or TEST'. These are the listed results:

Ð column |Sd|: cardinality of the derived Sd;
Ð column LB: lower bound to d(S) (see Theorem 12);
Ð column UB: upper bound to d(S) (obtained by applying Algorithm G

to the derived Sd, see Theorem 15);
Ð columns G, S1_MEC, S2_MEC, OLGA: cardinality of the solution output

by Algorithms G, S1_MEC, S2_MEC, OLGA, respectively;
Ð column MEC: cardinality of the solution output by algorithm MEC

from left to rightÊ(left), and by algorithm MEC from right to left
(right);

The last element of each column represents the execution time (averaged over the
10 TEST or TEST' instances) of the corresponding algorithm, and reported in seconds.
Notice that the average execution time of algorithm MEC when applied from left to
right is always smaller than the average execution time of algorithm MEC when
applied from right to left. This depends on the implementation of the min and max
functions in MATLAB. Notice that the time required to compute the upper bound UB
is exactly the time required to solve DSS at optimality on the derived SIG.

19

|Sd| LB UB G MEC S1_MEC S2_MEC OLGA

23 8 12 9 9 9 9 9 10
28 7 11 9 9 9 9 9 10
25 7 11 8 8 8 8 8 8
24 8 12 9 9 9 9 9 11
24 7 13 10 10 10 10 10 10
21 8 11 8 8 8 8 8 9
19 6 12 7 7 7 7 7 8
22 6 12 9 9 9 9 9 9
22 8 11 9 9 9 9 9 10
26 6 11 8 8 8 8 8 9

time 1.6 1.33 2.99 7.77 8.58 158 1151 261

Table 1ÊÐÊTESTÊ=(40,100,5,2)

|Sd| LB UB G MEC S1_MEC S2_MEC OLGA

18 4 8 7 7 7 7 7 8
17 3 7 6 6 6 6 6 7
21 3 9 8 7 7 7 7 9
14 4 8 6 6 6 6 6 6
14 4 8 7 6 6 6 6 6
17 5 7 7 7 7 7 7 7
15 3 8 6 6 6 6 6 7
18 4 7 6 6 6 6 6 7
13 4 8 6 6 6 6 6 7
14 4 8 7 7 7 7 7 8

time 1.02 0.908 2.395 6.1 6.66 84 457 682

Table 2ÊÐÊTESTÊ=(40,100,5,5)

|Sd| LB UB G MEC S1_MEC S2_MEC OLGA

15 6 9 8 8 8 8 8 8
14 6 7 7 7 7 7 7 7
16 5 5 5 5 5 5 5 5
14 7 8 7 7 7 7 7 8
13 5 7 6 6 6 6 6 7
14 7 9 8 8 8 8 8 8
14 7 8 8 8 8 8 8 8
16 7 8 8 8 8 8 8 8
16 7 7 7 7 7 7 7 7
14 6 8 8 8 8 8 8 9

time 0.92 0.702 1.144 2.77 2.89 42.5 209.5 11.4

Table 3ÊÐÊTESTÊ=(20,100,5,2)

20

|Sd| LB UB G MEC S1_MEC S2_MEC OLGA

11 3 6 4 4 4 4 4 5
8 3 4 4 4 4 4 4 4
9 3 6 5 5 5 5 5 5
8 2 5 5 4 4 4 4 4
7 2 4 4 4 4 4 4 4
10 4 7 6 6 6 6 6 6
9 3 7 6 6 6 6 6 6
11 3 5 5 5 5 5 5 5
11 3 6 6 6 6 6 6 6
9 2 5 3 3 3 3 3 4

time 0.43 0.458 1.049 2.072 2.222 20.4 67.4 76.8

Table 4ÊÐÊTESTÊ=(20,100,5,10)

From Tables 1 through 4, and from the remaining 16 ones, we derive the
following conclusions.

Objective function: Algorithms G, MEC, S1_MEC, and S2_MEC give the very same
result, but for three examples where Algorithm G outputs a solution which is one
unit larger than the solutions output by the other three algorithms. On all the
remaining 197 problems, algorithms G, MEC, S1_MEC, and S2_MEC gave the same
solution. The behaviour of OLGA was definitely worse than the behaviour of G, MEC,
S1_MEC, and S2_MEC: in fact OLGA output a solution of larger cardinality on 76
problems over 200.

Execution times: The execution times reported in the tables show the general trend
on all the 200 problems, and confirm the computational complexities stated in the
previous Section. Algorithm G is always the fastest algorithm, followed by MEC
which still has reasonable execution times. The running times of both algorithms
depend on n and decrease for increasing p. S1_MEC takes 10 to 20 times the time
required by MEC, and S2_MEC requires 5 to 10 times the time required by S1_MEC,
approximatively. The running times of these two algorithms also depend on n and
decrease for increasing p. The execution time of OLGA is quite homogeneous within
the set of problems characterized by the same 4-uple TEST.

21

|Sd| LB UB G MEC S1_MEC S2_MEC OLGA

26 5 14 10 10 11 10 10 11
29 5 12 8 7 7 7 7 8
31 13 17 15 15 15 15 15 15
26 7 17 13 13 13 13 13 13
28 5 16 10 10 11 10 10 10
30 9 18 14 14 14 14 14 15
32 4 16 11 11 12 10 10 10
30 7 20 13 13 15 13 13 14
29 4 18 12 11 13 11 11 12
30 13 21 17 17 17 17 17 18

time 1.76 2.79 4.2 9.23 10.4 149 2516 168

Table 5ÊÐÊTEST'Ê=(35,100,2,1.5)ÊÈÊ(5,100,10,5)

|Sd| LB UB G MEC S1_MEC S2_MEC OLGA

20 5 15 9 9 9 9 9 10
20 4 14 7 7 8 7 7 9
19 2 15 8 7 8 7 7 9
19 4 15 8 8 8 8 8 8
18 4 13 7 7 7 7 7 8
19 3 12 7 7 7 7 7 7
20 3 12 6 6 6 6 6 8
18 3 12 5 5 5 5 5 5
19 3 12 6 6 6 6 6 6
22 3 15 8 8 8 8 8 8

time 0.94 1.645 2.632 6.28 7.14 116.2 778 599

Table 6ÊÐÊTEST'Ê=(20,100,2,1.5)ÊÈÊ(20,100,10,5)

Tables 5 and 6 summarize the results on the TEST' problems, which have been
constructed in order to emphasize the differences among the algorithms.

Objective function: S1_MEC and S2_MEC do always find the best solution on all the
TEST' problems (such solution can not be proved to be an optimum one, of course),
while MEC found the best solution on all examples but one. Algorithm G fails to find
the best solution on 5 over 20 examples. Nevertheless, all these algorithms
outperform OLGA, which fails to find the best solution on 50% of the examples,
approximatively.

Execution times: The same conclusions drawn for the TEST problems hold.
It is worth noticing that an all TEST and TEST' problems, as espected, the execution

times are slightly related to |Sd|.

22

#triple
|Sd|

LB UB G MEC S1_MEC S2_MEC OLGA

16
12

1
0.2

12
0.88

8
1.16

8
2.14

7
2.2

7
30

7
132

7
45

18
15

1
0.2

15
1.32

11
1.76

11
2.9

10
2.9

10
60

10
310

10
130

20
17

1
0.2

17
1.6

13
2.19

13
3.7

13
4

12
80

12
500

11
120

28
23

1
0.3

23
3

11
2.7

11
5.3

10
5.5

7
120

7
1020

7
280

16
13

1
0.2

13
1.1

8
1.21

8
2.14

9
2.47

8
380

7
180

7
80

Table 7ÊÐÊAd hoc designed examples

The last table shows the results obtained on ad hoc designed examples. Each element
of the first column reports the number of triples of the given S (above) and of the
derived (below). Each element of the remaining columns (see also explanations of
Tables 1 through 6) reports the objective function value and the time required to
compute it.

The situation is somewhat different from the randomly generated ones. The first
and second examples were designed to show that Algorithm G can be easily made to
fail. The third one shows that OLGA also has some peculiar property. The fourth one
clearly separates the two simplest algorithms (G and M E C) from the more
sophisticated ones. Finally, the fifth example distinguish S1_MEC from S2_MEC,
showing that the latter may outperform the former one. The execution times result
in being very different from one another. All the examples are characterized by
having a very small lower bound, due to the presence of a window containing all the
other ones, and by having an upper bound which always coincides with |Sd|,
because the windows of Sd are pairwise disjoint by construction. Notice that the
instance of DSS constructed in the NP-completeness proof has exactly this structure.
Notice also that the difference among UB and LB is larger when the problem instance
has both triples with small windows and interval lengths and triples with large
windows and interval lengths, in a relative sense.

In conclusion, we think that the most effective algorithms were MEC and S1ÐMEC,
which gave the better results both from the view point of the trade off among
objective function and execution time. Indeed, S1ÐMEC achieves slightly better results
than MEC, but it definitely requires longer computation time.

23

9. Conclusions

We studied the problem of computing the dominating set of a Shiftable Interval
Graph (SIG). The problem is proved to be NP-complete in the strong sense on
arbitrary SIG's, and it is proved to be polynomial time solvable on special classes.
Lower and upper bounds are proposed for the general case. Exact algorithms for the
special cases considered are also proposed, as well as several heuristic algorithms for
the general case. The tables reported show that some of the heuristic algorithms find
good solutions in a reasonable amount of time, which compares well if we recall that
the problem is NP-complete in the strong sense. Many examples were studied which
helped in understanding the most difficult problem structures.

References

[1] Bertossi, A.A., ÒTotal Domination in Interval GraphsÓ, Inf. Proc. Lett. 23,
(1986), 131-134.

[2] Bonfiglio, P.: Lo Scheduling e il Problema dell'Insieme Dominante sui SIG,
Universit� di Roma ÒLa SapienzaÓ, Tesi di Laurea in Ingegneria Elettronica,
1994.

[3] Booth, K.S., and J.H. Johnson, ÒDominating Sets in Chordal GraphsÓ, SIAM
J. Comput. 11, (1982), 191-199.

[4] Farber, M., ÒIndependent Domination in Chordal GraphsÓ, Op. Res. Lett. 1,
(1982), 134-138.

[5] Farber, M., ÒDomination, Independent Domination, and Duality in Strongly
Chordal GraphsÓ, Discr. Appl. Math. 7, (1984), 115-130.

[6] Garey, M.R., and D.S. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness, W.H. Freeman & Co., New York,1979.

[7] Gilmore, P.C., and A.J. Hoffman, ÒA Characterization of Comparability and
of Interval GraphsÓ, Canad. J. Math. 16, (1964), 539Ð548.

[8] Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Academic
Press, London 1980.

[9] Keil J.M., ÒTotal Domination in Interval GraphsÓ, Inf. Proc. Lett. 22, (1986),
171-174.

[10] Malucelli, F., and S. Nicoloso, ÒShiftable Interval GraphsÓ, IASI-CNR Rep. 435
(1996), revised 1998 and submitted to Discreta Applied Mathematics.

24

[11] Preparata, F.P., and M.I. Shamos: Computational Geometry, Springer Verlag,
New York, 1985.

[12] Ramalingan, G., and C. P. Rangan, ÒA Unified Approach to Domination
Problems on Interval GraphsÓ, Inf. Proc. Lett. 27, (1988), 271-274.

[13] White, K., M. Farber, and W.R. Pulleyblank, ÒSteiner Trees, Connected
Domination, and Strongly Chordal GraphsÓ, Networks 15, (1985), 109-124.

25

***mi accorgo solo ora che non abbiamo mai verificato se un era buono tra quelli
utilizzati nelle prove sperimentali.

