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1. Introduction

The Quadratic Semi-Assignment Problem (QSAP) plays an important role in modeling many

practical applications, e.g. clustering and partitioning problems (Hansen and Lih 1989), assigning

professors to departments (Gallo and Simeone 1991), and some scheduling problems (Chretienne

1989). Sometimes the model has been extended to take into account "real life" factors as in

(Towsley 1986; Dixit and Moldovan 1990).

The QSAP is well known to be NP-hard (Sahni and Gonzalez 1976); tractable cases are

presented in (Bokhari 1981; Bokhari 1987) which study distributed computing systems, and in

(Malucelli 1994).  In (Magirou and Milis 1989) a lower bound based on the solution of

polynomially solvable subproblems is applied within a branch and bound algorithm. In (Malucelli

and Pretolani 1994) this idea is further developed; the preliminary results presented in (Malucelli

and Pretolani 1993) show that the new bounds favorably compare with the one proposed in

(Magirou and Milis 1989). Other lower bounds based on Lagrangean relaxations have been

devised in (Gallo, Tomasin et al. 1986), (Gallo and Simeone 1991) and in (Billionet, Costa et al.

1992).

To illustrate the problem we will use the following application example: consider a distributed

computing system with p not necessarily identical processors, and n processes to be assigned to

the processors. Let N be the set of processes and M the set of processors. The following data are

known:

- during the computation processes i and j exchange fij units of information;

- the time needed to move one unit of information from processor r to processor s isÊdrs;

- the computation time required by process i, when it runs on processor s, is eis.

The mapping problem entails assigning the processes to the processors so that the global time

spent by the system (execution and communication time) is minimized. Let P be the set of all the

feasible assignment functions r:N®M which associate a processor r(i)ÎM with each process

iÎN; the problem can be formulated as a QSAP as follows:
Z = min { å

i,jÎN
Ê fijdr(i)r(j) + å

iÎN
Ê eir(i), rÎP}. (1.1)
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The non zero fij coefficients define the communication pattern between processes, usually

represented by an undirected graph. As presented in (Malucelli and Pretolani 1994) the optimal

mapping can be found in polynomial time when this graph belongs to the class of reducible

graphs.

The QSAP can also be formulated in a more general way: considering the matrix qijhk i,jÎN,

h,kÎM, the problem is:
Z = min { å

i,jÎN
Ê qijr(i)r(j), rÎP}. (1.2)

This paper is organized as follows. Section 2 introduces the class of reducible graphs and we

devise a polynomial algorithm to solve instances of QSAP whose associated graph is reducible.

In Section 3 we exploit these results  to provide lower bounds. A generalization of this class of

bounds which derives from a Lagrangean decomposition of the problem is introduced in Section

4. Computational results are reported in Section 5, while Section 6 concludes the paper along with

some suggestions for future work.

2 QSAP on reducible graphs

2.1 Reducible graphs

Consider the connected undirected graph G(N,A) where n=|N| and m=|A|; G is reducible if and

only if it can be reduced to a single node by a sequence of the following  operations:

- Tail reduction

Let i be a node of degree 1 (i.e. there is only one arc incident with node i), and (j,i) be the arc

connecting node i to the rest of the graph G. The graph G can be reduced to a new graph G'

where node i and arc (j,i) have been deleted (see Fig. 1). Tail(i) will denote the above reduction

operation.

i

j

G

j

G'

Fig. 1
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- Series reduction

Let i be a node of degree 2, and let (i,j) and (i,h), j¹h, be the two arcs incident with i. The graph

G can be reduced to a new graph G' obtained from G by removing node i, arcs (i,j) and (i,h),

and adding a new arc (j,h) (see Fig. 2). This operation is denoted by Series(h, i, j).

i

j

G G'

h

j

h

Fig. 2

- Parallel reduction

Let a=(i,j) and a'=(i,j) be two ÒparallelÓ arcs of graph G. The graph can be reduced to a new

graph G' with a single arc between nodes i and j (see Fig. 3). This operation is denoted by

Parallel(i, j).

i

j

G G'

j

i

Fig. 3

The class of reducible graphs is clearly a proper extension of the class of series-parallel graphs,

which are reducible to a single arc by a sequence of parallel and series reductions (Valdes, Lawler

et al. 1982). For example, trees are included in the class of reducible graphs, although they do not

belong to the series-parallel class.

Let us state some properties of the reducible graphs which will be useful in the rest of the paper.

For further details see (Malucelli and Pretolani 1994).

Property 1

Suppose that we can repeatedly apply reductions to a graph G as far as possible; graph GÕ thus

obtained is independent of the sequence of reductions.
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Property 1 means that if several reductions are applicable to the same graph, we can break ties

arbitrarily without affecting the final result. This establishes the confluence property of the

reduction operations.

Property 2

A simple reducible graph G  (i.e. without parallel arcs) contains at most 2n-3 arcs.

An algorithm that recognizes reducible graphs can easily be obtained as follows: given an input

graph G, repeatedly apply reductions to G as far as possible; G is reducible if and only if the

resulting reduced graph contains a single node. An algorithm which runs in linear time is

described in (Malucelli and Pretolani 1994).

2.1 A solution algorithm for QSAP on reducible graphs

Consider the undirected graph G(N,A) where the set of nodes N is {1,É,n} (each node represents

a process) and the set of arcs A is determined by the coefficients fij, that is A={(i,j): fij>0 or fji>0}.

Later, we assume that G is connected; in fact, if G is not connected, one independent QSAP for

each connected component of G can be identified.

When graph G is reducible, the corresponding QSAP can be solved in polynomial time. In order

to carry out the computation of the optimal solution, we introduce some labels associated with the

nodes and the arcs of G.  Specifically, we will associate the labels uir "rÎM with each node iÎN,

and the labels virjs "r, sÎM to each arc (i,j)ÎA. Initially these labels are set as follows:

uir := eir, "iÎN, "rÎM,
virjs := fijdrs+fjidsr, " i, jÎN, "r, sÎM.

Note that initially the labels associated with each node represent the set of all possible processor

assignments for the related process, and their initial value is the execution time of the process on

the various processors. The arc labels represent the set of all possible assignments for a pair of

communicating processes; their initial value is the communication time.

Our solution consists of updating the labels according to the reduction operations performed on

G.  In the end when G has been reduced to a single node, the minimum label of that node gives

the optimal solution value.
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The label updating can be described as follows:

- Tail reduction

Let iÎN be a node of degree 1 and (i,j)ÎA be the arc connecting i to the graph G. Labels ujr

are modified as follows, for each rÎM:

ujr := ujr  + min {uis + visjr, sÎM}. (2.1)

In practice ujr  is modified in order to take into account the best possible assignment for i

once j has been assigned to r.  This operation can be carried out in O(p2) time.

- Series reduction

Let iÎN a node of degree two, and let (i,j) and (i,l) be the two arcs incident with i. Labels vjrls

are set as follows, for each r, sÎM:

vjrls := min {vitjr + vitls + uit, tÎM}. (2.2)

Here vjrls  gives the best possible assignment for i, once j and l have been assigned to r and s,

respectively. This operation can be carried out in O(p3) time.

- Parallel reduction

Let a'=(i,j) and a"=(i,j) be two parallel arcs of graph G.  Let v'irjs and v"irjs be the labels

associated with a' and a" respectively. The labels virjs of the new arc that will substitute a' and

a"  are obtained as follows:

virjs := v'irjs + v"irjs, " r, s ÎM.

This operation can be carried out in O(p2) time.

Since at most O(n) reduction operations are applied on a reducible graph G, the overall

complexity of the transformations is O(np3).

The computation above gives the value of the optimal solution. In order to obtain an optimal

assignment r an extra computation is needed. To this end, we store in a stack the local choices we

make in each Series or Tail reduction operation. Note that we do not need to store any

information when executing a Parallel reduction, since this operation does not perform any

assignment.

The stacked information is:
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- Tail reduction

Let (i,j) and i  be the arc and the node eliminated by the reduction, and for each r in M we

denote by i(r) the index sÎM giving the minimum in (2.1). On the stack we put a label Tail,

the nodes i  and j, and the set {i(r):Êr=1,É,p};

- Series reduction

Let (j,l) be the new arc introduced by the reduction, and let i be the eliminated node; for each

pair r, s ÎM, we denote by i(r,s) the index tÎM giving the minimum in (2.2). On the stack we

put a label Series, the nodes j, l and i, and the set {i(r,s): r,s=1,É,p}.

At the end of the reduction, let uir  be the minimum label of the remaining node i; we set r(i)Ê= r.

Then, we repeatedly remove elements from the stack and, according to the label Tail or Series, we

perform the following operations:

Tail: let r = r(j); set r(i) = i(r);

Series : let r = r(i) and s = r(j);  set r(h) = h(r,s).

It is easy to see that r(j) (r(i) and r(j), respectively) has already been assigned when a Tail

(Series, respectively) reduction is considered, hence the above method finds an optimal

assignmentÊr.

3. Lower bounds

The problem of finding sharp and efficiently computable lower bounds for QSAP has been

widely studied in the literature; for example (Gallo, Tomasin et al. 1986), (Gallo and Simeone

1991) and (Billionet, Costa et al. 1992) present efficient methods for solving relaxations of

particular formulations of QSAP.

The algorithm for polynomially solvable cases, presented in Section 2, can be applied to obtain

lower bounds. This approach was partially exploited in (Magirou and Milis 1989), and further

developed in  (Malucelli and Pretolani 1994). We review these methods below, and present a new

bound based on a different kind of reduction.

3.1 Subgraph and Partition lower bounds

Let G=(N,A) be a non reducible connected communication graph, corresponding to a given QSAP

problem, and let Gr= (N, Ar) be a reducible subgraph of G. We can define a new problem



7

restricted to graph Gr, in which only communication costs corresponding to arcs in Ar are

considered; the objective function becomes:

å
(i,j)ÎArÊ

Êfijdr(i)r(j) + fjidr(j)r(i) + å
iÎN

ÊeiÊr(i).

Assume that the quadratic costs corresponding to arcs in A\Ar are non-negative: we can verify that

the optimal solution Zr of the problem restricted to Gr is a lower bound for the original problem.

We call the value thus obtained subgraph bound.

Consider a partition of the set of edges A\Ar in k subsets A1,É,Ak such that each partial graph

Gl=(N, Al), l =1,É,k, is reducible; define the problems restricted to graphs G1,É,Gk, in which

linear costs are set to zero:

Zl = min { å
(i,j)ÎAl

Êfijdr(i)r(j) + fjidr(j)r(i): rÎP}, l =1,É,k.

In the light of the above decomposition, the optimal solution value of  (1.1) can be written as:

Z = Z*
r  + å

l=1

k
ÊZ*

l  ,

where Z*
r   and Z*

l , l =1,É,k, are the costs of the optimal solution of (1.1) in the problems defined

on graphs Gr and Gl, l =1,É,k. Clearly ZrÊ£ÊZ*
r  and ZlÊ£ÊZ*

l , hence the sum

L = Zr  + å
l=1

k
ÊZl £ Z*

r  + å
l=1

k
ÊZ*

l   =ÊZ

is a lower bound for the original problem. We call partition bound the value L obtained as above;

clearly the restricted problems Gr and Gl= (N, Al), l =1,É,k, can be solved with an overall O(mp3)

complexity.

Note that the partition bound can also be used when the non negativity hypothesis of the quadratic

costs is relaxed, while the subgraph bound can only be used if the quadratic costs are non-

negative. Furthermore, all the linear costs are considered during the solution of the first

subproblem. A possible variant of the bound is to consider the linear costs in other subproblems

besides the first one, or partition them among the various subproblems. The best way to distribute

the linear costs among the subproblems can be studied within the framework of the Lagrangean

Decomposition techniques which will be discussed in the next section.
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3.2 Decomposition into reducible subgraphs

Consider the problem of determining the reducible subgraph Gr. In order to obtain a sharper

bound, we could search for a subgraph with a large set of arcs; arcs (i,j) corresponding to

processes that exchange a large amount of information are preferable. We should thus find a

reducible subgraph Gr=Ê(N,ÊAr) with maximum weight W(Gr), where

W(Gr) = å
(i,j)ÎAr

Ê(fij + fji).

The problem of finding the reducible subgraph with the maximum number of arcs  has been

shown to be NP-hard in (Malucelli and Pretolani 1994). Thus the reducible subgraph of

maximum cardinality or maximum weight cannot easily be identified. This is not true, however, if

we require that Gr is a tree; in fact, many efficient algorithms for finding a maximum spanning

tree in a graph are known (Tarjan 1983). Let us define as tree bound the value obtained by

solving a restricted problem, where Gr is a maximum spanning tree with respect to the weight

W(Gr); this bound, proposed in (Magirou and Milis 1989), can be determined in time O(np2).

Moreover, in the partition bound we could consider only subgraphs of  G which are trees; we will

call tree partition bound the value obtained when  Gr  and Gl, l =1,É,k, are trees. In this case the

resulting complexity is O(mp2).

In practical applications, efficient heuristic algorithms are needed to identify subgraphs with

sufficiently large weights. However, the maximum weight subgraph Gr does not always give the

best lower bound. We may require Gr to be maximal, i.e. that no arcs in A\Ar can be added to Ar

so that the reducibility will be maintained. A trivial algorithm to find a maximal reducible

subgraph has an O(nm) complexity; an interesting problem is to find a maximal reducible

subgraph in less than O(nm) time. Similar problems arise when we search for a partition of the

graph into k reducible subgraphs.

3.3 L-I reduction

Next we propose a bound which has the same complexity as the partition bound, but does not

entail finding an explicit partition of G. To this end, we introduce a new operation called L-I

reduction which replaces a pair of arcs (i,j) and (i,l) with a new arc (j,l). This reduction does not

guarantee that the connectivity of the graph will be maintained. In fact, any graph can be reduced
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to a set of isolated nodes using tail, series, parallel and L-I reductions. Note that  Property 1 does

no longer hold if L-I reductions are used. We define a label updating that corresponds to the L-I

reduction as follows:

- L-I reduction

Let iÎN be a node of at least degree two, and let (i,j) and (i,l) be two arcs incident with i.

Labels vjrls are set as follows, for each r, sÎM:

vjrls := min {vjrit + vitls : tÎM}

The new vjrls  take into account the best possible assignment for i, once j and l have been

assigned to r and s, respectively, without considering the linear costs (i.e. labels uir ). This

operation can be carried out in O(p3) time.

Consider the graph G' obtained from G by performing an L-I reduction. The optimal solution of

the QSAP associated with G' is not greater than the optimal solution of the QSAP associated with

G. Indeed, for any assignment the cost due to the new arc (j,l) cannot be greater than the cost of

the pair (i,j) and (i,l). Suppose that we apply the reduction operations until G has been reduced to

a set of isolated nodes. Since at each step of the reduction process the optimal solution value of

the resulting problem does not increase, the sum of the minimum labels of the remaining nodes

gives a lower bound.  We call L-I bound  the value obtained using this method; the  overall

complexity is O(np3). Obviously the value of the bound can be greatly affected by the selection of

the reduction operation to perform at each step, and by the choice of the two arcs (i,j) and (i,l) an

L-I reduction is applied to. Thereafter we will assume that an L-I reduction will only be performed

when the other reductions cannot be applied; moreover, we always select for an L-I reduction a

node i of minimum degree.

4. Lagrangean decomposition

This section outlines a theoretical improvement to our lower bounds by introducing a

Lagrangean Decomposition  technique; in particular, our approach is a slight variant of the one

introduced in (Guignard and Kim 1986). Lagrangean decompositions have often been used in the

literature (Hansen 1979; Hansen 1979; Michelon and Maculan 1993); this technique seems to be
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quite suitable when it allows the hidden structure of a problem to be exploited by decomposing it

into efficiently solvable subproblems.

In order to describe our approach, and the properties of the Lagrangean decomposition, we

introduce the integer linear formulation of the QSAP:

Z = min å
i,jÎN

ÊÊ å
r,sÎM

Ê fijdrsxirxjs   + å
iÎN,rÎM

Ê eirxir

s.t. (4.1)
xÎX={å

rÎM
Êxir=1, "iÎN, xirÎ{0,1}"iÎN, "rÎM}.

Variable xir is equal to one if and only if process i has been assigned to processor r.

Consider a generic decomposition of the matrix f such that f=f1+f2. Problem (4.1) can be

rewritten as follows:

min {å
i,j

Êå
r,s

Ê f1ijdrsxirxjs   + å
i,r

Êeirxir   +  å
i,j

Êå
r,s

Ê f2ijdrsxirxjs:   xÎX} . (4.2)

Let us introduce a new set of variables yir, and the constraints xir=yir"iÎN, "rÎM. Then (4.2)

becomes:

min å
i,j

Êå
r,s

Ê f1ijdrsxirxjs   +  å
i,r

Ê eirxir   +  å
i,j

Êå
r,s

Ê f2ijdrsyiryjs

s.t.
x, yÎX, (4.3)

x=y.

The Lagrangean relaxation of constraints x=y, when a multiplier lir for each iÎN and rÎM is

introduced, defines the following Lagrangean function L(l) and the corresponding generalized

dual problem LD:

L(l) = min {å
i,j

Êå
r,s

Ê f1ijdrsxirxjs   +  å
i,r

Ê(eir + lir)xir :      xÎX}   +

min{ å
i,j

Êå
r,s

Ê f2ijdrsyiryjs   Ð   å
i,r

Ê liryir :      yÎX}

LD = maxl L(l).

This approach can be generalized to any partition f=f0 + f1 +É+ fk. In this case we must

introduce k+1 sets of variables {x0,x1,É,xk}, and k set of constraints xi-1=xi, i=1,É,k; let

{l1,É,lk} be the Lagrangean multipliers associated with these sets of constraints. The

Lagrangean dual then becomes:
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LD = maxl1,É,lk L(l1,É,lk). (4.4)

This kind of decomposition allows us to obtain efficiently solvable subproblems when the

matrices f0,Êf1,É, fk correspond to reducible subgraphs, in particular, when they define a partition

of the communication graph into reducible subgraphs G0, G1,É, Gk. Now let PB be the value of

the partition bound which uses the above decomposition; the following properties are

straightforward:

PB = L(l1,É,lk)ÊÊli=0,Ê i=1,É,k;

LD ³ÊPB

Note that the linear costs only appear in the first subproblem, associated with variables x0. These

costs could be distributed among the subproblems in a different way, as we suggested in the

previous section. In the case of Lagrangean Decomposition this is equivalent to considering

initializations of multipliers which are not all equal to zero.

The number of multipliers of L(l1,É,lk) may be extremely large, namely O(knp). This could

turn the solution of (4.4) into an intractable problem. Some ideas to reduce the number of

multipliers are presented in (Malucelli and Pretolani 1993).

5. Numerical comparison of lower bounds

This section compares the lower bounds described in Sections 3 and 4. We investigate the

effectiveness of the partition technique and the use of reducible graphs instead of trees; we then

focus on the behavior of the partition bound and of the Lagrangean decomposition.

In the following tables Tree and Red denote the subgraph bounds which use a spanning tree and

a maximal reducible subgraph; Tree_P, and Red_P are the partition bounds which use a

decomposition into trees and reducible subgraphs; LI_Red is the bound obtained using the

L-I reductions as well; LD is the value of the Lagrangean decomposition (4.4). In order to

compute the optimal solution of the Lagrangean relaxation we use the bundle trust region

algorithm developed in (Carraresi, Frangioni et al. 1994).

In the first group of experiments (Tables 1,É,6) we investigate the effects of various factors, such

as the size of the problem, the density of the graph G, and the structure of the costs. To this aim,

we consider quite large problems, namely n=50, m={200, 300, 625} (Tables 1, 3, 5) and n=100,
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m={400, 1000, 2500} (tables 2, 4, 6). Each table entry contains the average value of the bound

over a sample of 10 instances.

Tables 1, 2, 3 and 4 report the results for a QSAP of type (1.1), where drs (r¹s) represent the

distances on a mesh of size 2´4 (p=8), 4´4 (p=16) and 4´8 (p=32), fij are integer and uniformly

distributed in [1..10].

In Tables 1 and 2 the distance drr, r=1,É,p, is uniformly distributed in [0..1]; the linear costs eir

are equal to deir, where d=mp/4n and eir are integer and uniformly distributed in [1..10]. This

implies that the total linear cost is expected to be of the same order as the total quadratic cost. In

Tables 3 and 4 drr, r=1,É,p, are equal to the maximum mesh distance; the linear costs eir are

uniformly distributed in [1..10]. In this case, the contribution of linear costs is not expected to be

very significant.

The decision to have non zero distances drr, r=1,É,p,  is suggested by the fact that if drr=0,

r=1,É,p, the partition bound is equal to the subgraph bound. In fact, for the problems on graphs

Gl, 1 £ l £ k  an optimal solution Zl = 0 can be obtained by assigning all processes to the same

processor. In the problems reported in Tables 3 and 4 this situation is avoided by setting a high

value drr, r=1,É,p.

m p Tree Red Tree_P Red_P LI_Red
200 8 617.8 705.3 937.6 999.9 990.8
200 16 609.7 703.5 929.5 998.1 1008.6
200 32 797.8 985.0 1384.7 1517.1 1539.8
350 8 951.8 1071.0 1529.3 1615.7 1639.4
350 16 967.8 1102.3 1545.3 1647.0 1668.4
350 32 1237.9 1464.9 2306.9 2475.4 2563.6
625 8 1629.6 1766.1 2639.9 2743.6 2797.5
625 16 1577.4 1733.0 2587.7 2710.5 2779.2
625 32 2001.8 2284.1 3877.8 4096.2 4269.2

Table 1
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m p Tree Red Tree_P Red_P LI_Red
400 8 1233.3 1360.4 1878.9 1962.2 1956.2
400 16 1227.8 1378.7 1873.4 1980.5 1972.6
400 32 1600.5 1859.1 2790.3 2973.0 3021.2

1000 8 2723.8 2924.5 4352.3 4495.4 4544.1
1000 16 2672.4 2911.7 4300.9 4482.6 4529.1
1000 32 3378.8 3753.5 6406.9 6682.6 6934.4
2500 8 6416.6 6698.1 10443.4 10653.8 10810.3
2500 16 6344.2 6668.0 10371.0 10623.7 10824.4
2500 32 8065.1 8600.8 15552.9 15958.2 16581.5

Table 2

m p Tree Red Tree_P Red_P LI_Red
200 8 216.3 310.6 809.4 852.9 848.3
200 16 194.8 291 787.9 833.3 823.6
200 32 220.1 366 1186.6 1263.8 1242.4
350 8 208.5 326.1 1343.4 1443.9 1439.2
350 16 186.7 309.4 1321.6 1427.2 1415.2
350 32 193 374.1 2027.5 2201.9 2179.5
625 8 205.8 349.5 2294.8 2505.9 2528.3
625 16 184.5 332.4 2273.5 2488.8 2504.6
625 32 180.6 392.2 3518.4 3894.8 3902.2

Table 3

m p Tree Red Tree_P Red_P LI_Red
400 8 435.8 573.8 1625.3 1692.5 1682.7
400 16 391.5 531.7 1581.0 1650.4 1624.7
400 32 444.4 646.7 2384.2 2495.6 2449.7

1000 8 411.6 613.9 3721.0 3951.6 3946.1
1000 16 370.3 578.7 3679.7 3916.4 3891.0
1000 32 368.9 669.7 5684.2 6097.5 6030.8
2500 8 411.2 703.7 8952.3 9808.0 9869.3
2500 16 370.0 673.1 8911.1 9777.4 9821.5
2500 32 358.5 777.3 13900.0 15356.2 15430.3

Table 4

The above tables show that Red dominates Tree; as expected, the relative difference between the

two bounds greater when quadratic costs dominate the linear ones (Tables 3 and 4). Moreover, the

partition technique is worth applying, even in the least favorable case where linear costs are higher

(Tables 1 and 2). Note that the partition is also effective when spanning trees are used; indeed, the
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relative difference between Red_P and Tree_P is usually smaller than between Red and Tree.

Finally, note that LI_Red is almost always equivalent to Red_P, but behaves better for problems

with a large number of arcs, while Red_P tends to give better results for sparse graphs.

Tables 5 and 6 report the results for QSAP problems of type (1.2), where both the quadratic and

the linear costs are uniformly distributed in [0..10].

m p Tree Red Tree_P Red_P LI_Red
200 8 99.6 126.3 103.7 141.0 128.8
200 16 53.9 77.2 53.9 77.7 55.0
200 32 40.9 77.1 40.9 77.6 48.9
350 8 97.4 139.3 104.0 182.1 177.1
350 16 52.6 86.7 52.6 91.2 73.8
350 32 41.5 89.6 41.5 96.9 78.6
625 8 95.4 148.9 110.5 264.4 291.5
625 16 51.7 97.5 51.7 118.7 124.2
625 32 40.8 107.2 40.8 144.0 166.6

Table 5

m p Tree Red Tree_P Red_P LI_Red
400 8 188.9 229.8 196.7 252.2 224.8
400 16 105.1 138.8 105.1 138.9 91.9
400 32 86.1 133.4 86.1 133.4 77.0

1000 8 190.9 263.7 218.2 394.2 363.1
1000 16 108.0 170.4 108.0 183.9 128.9
1000 32 85.7 172.1 85.7 191.6 131.3
2500 8 192.9 304.7 271.3 849.9 939.0
2500 16 106.1 199.2 106.1 326.4 352.5
2500 32 84.9 218.6 84.9 416.2 511.9

Table 6

For these problems, the partition technique is sometimes less effective than in the previous cases,

in particular when p is large. In fact, Red_P gives significant improvements, especially when m is

large; whereas the improvement of Tree_P on Tree is often negligible. In fact, for larger values of

p, qijrsÊ=Ê0 tends to occur with high probability, hence the tail operation is likely to leave node

labels unchanged. The behavior of LI_Red is similar to the one shown in the previous tables.
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In the following experiments, we tried to get a better insight into the behavior of lower bounds; we

considered smaller problems, comparing the relative errors of lower bounds with respect to upper

bounds. To obtain upper bounds (i.e. feasible solutions), we devised a heuristic procedure, based

on a simple simulated annealing method. Hereafter UB will denote the value of the generated

feasible solution. Metaheuristic methods for the QSAP are studied in (Domschke,  Forst et al.

1992).

Tables 7 and 8 report the relative errors e(T)=(UB-Tree)/Tree and e(R)=(UB-Red_P)/Red_P,

along with the percentage of gap UB-Tree  closed by Red_P, that is gap=100(Red_P-

Tree)/(UB-Tree).

We solved problems with n ranging between 10 and 50. For each value of n, we considered three

different classes of graphs: sparse, where m=n, medium, where m=n2/10, and dense, where

m=n2/4. We set p=2*3 in Table 7, and p=4*3 in Table 8. Costs were generated as for the

problems in Tables 3 and 4.

p=2*3 sparse medium dense
n e(T) e(R) gap e(T) e(R) gap e(T) e(R) gap
10 0.238 0 100% 0.562 0.018 95.3% 1.561 0.073 89.0%
20 0.148 0.002 99.1% 0.960 0.039 92.5% 3.903 0.135 85.1%
30 0.144 0.007 95.9% 1.945 0.101 86.1% 5.921 0.130 86.5%
40 0.154 0.009 93.8% 2.882 0.119 85.7% 8.094 0.137 86.5%
50 0.159 0.012 92.4% 3.748 0.184 85.1% 9.958 0.136 86.9%

Table 7

p=4*3 sparse medium dense
n e(T) e(R) gap e(T) e(R) gap e(T) e(R) gap
10 0.312 0.004 98.8% 0.735 0.043 90.3% 1.833 0.095 86.7%
20 0.174 0.010 95.4% 1.204 0.098 83.7% 4.712 0.205 79.4%
30 0.163 0.006 96.9% 2.372 0.169 79.5% 7.398 0.250 77.3%
40 0.177 0.018 89.8% 3.530 0.207 78.1% 10.940 0.268 76.8%
50 0.197 0.026 85.6% 4.489 0.201 79.6% 12.582 0.281 76.3%

Table 8

As expected, Red_P outperforms Tree: in particular, in the dense case, the approximation given

by Tree is meaningless, while the relative error provided by Red_P is reasonable; moreover, the

approximation of Red_P is quite stable when n grows, which is not true in the case of Tree. In
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the sparse case, the upper bound is very often equal to Red_P, and in the average UB and Red_P

differs by less than 3% ; whereas the difference between UB and Tree is much more significant.

Tables 9 and 10 report the relative errors e(R) and e(LD)=(UB-LD)/LD; here gap=100(LD-

Red_P)/(UB-Red_P). We solved the same problems as in Tables 7 and 8, with n ranging

between 10 and 30.

p=2*3 sparse medium dense
n e(R) e(LD) gap e(R) e(LD) gap e(R) e(LD) gap
10 0 0 Ð 0.018 0 100% 0.073 0.005 95.4%
20 0.002 0 100% 0.039 0.004 89.0% 0.135 0.046 63.7%
30 0.007 0.005 22.2% 0.101 0.020 78.8% 0.130 0.055 54.8%

Table 9

p=4*3 sparse medium dense
n e(R) e(LD) gap e(R) e(LD) gap e(R) e(LD) gap
10 0.004 0.002 50% 0.043 0.012 69.2% 0.095 0.026 73.5%
20 0.010 0.009 11.1% 0.098 0.037 61.0% 0.205 0.100 47.1%
30 0.006 0.003 58.3% 0.169 0.075 52.9% 0.250 0.153 33.7%

Table 10

In the sparse case the results are not very significant; in fact, as we noted before, Red_P is very

close to the optimum, so there is little room for improvement. In the dense case the Lagrangean

decomposition allows significant reductions to be obtained in the relative error, although this error

increases rapidly when n grows. It would be interesting to investigate whether the error increase

has to be related to the actual value of the duality gap, or if it may be due to a slow convergence of

the dual method utilized, or to the poor quality of the upper bound.

All the algorithms were implemented in C and C++, and the experiments were made on an

HP/9000-710 workstation. Since the execution time was not our main concern, we did not spend

much time developing efficient codes. The parameters of the bundle algorithm had the same

values for all the experiments: in particular, we fixed the maximum number of iterations to 500

and the bundle size to 150. With these settings the execution time for the largest problems did not

exceed five minutes. Clearly a more careful analysis of the parameter setting could lead to more

effective computations.
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6. Conclusions and further work

In this paper we have presented two methods for improving lower bounds for the QSAP: a graph

partition technique which allows the original problem to be decomposed into polynomially

solvable subproblems, and the use of Lagrangean decomposition to combine the results of the

individual subproblems. Our computational experiments show that both ideas are worth applying

and lead to promising results. In addition, the introduction of the L-I reduction allows us to define

a new lower bounding technique, whose results are comparable to those given by the partition

bound.

A crucial point appears to be the efficient computation of the Lagrangean relaxation; in fact it

might be interesting to investigate ad hoc procedures, as for example, multiplier adjustment

techniques. Another interesting topic for further research is the study of heuristic methods to

obtain feasible solutions for the QSAP, using the optimal solution of the Lagrangean

decomposition as a starting point.
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