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This paper presents a new graph theoretic framework for the passenger assignment prob-
lem that encompasses simultaneously the departure time and the route choice. The

implicit FIFO access to transit lines is taken into account by the concept of available capacity.
This notion of flow priority has not been considered explicitly in previous models. A traffic
equilibrium model is described and a computational procedure based on asymmetric board-
ing penalty functions is suggested.

Introduction
Consider a network of buses and/or surface and
underground railway lines, such that every transit
line (bus or railway) has a fixed itinerary and is
described by a sequence of bus stops or rail stations
and a fixed set of scheduled trips. We are interested
in the case where the time-tables are reasonably
reliable, and the number of transit lines and the trip
frequency of these lines are lower than that com-
monly associated with urban networks. For such
networks—usually associated with the suburban or
inter-urban setting—the departure time and the route
choice are equally important to commuters. Previous
studies that dealt with the departure time decision
problem concentrated mainly on the deterministic
and stochastic highway traffic assignment models. In
addition, most of the existing models are limited to a
single-route or single origin-destination pair (corridor
network), or to either the departure time choice or
to the route selection but not to both dimensions
simultaneously (e.g. Mahmassani and Herman 1984,
Alfa 1986, Mahmassani and Chang 1986, 1987, Newell
1987, Carey and Srinivasan 1988, Friesz et al. l989,
Alfa 1989). Only a few researchers have addressed

the departure time and route choice decision prob-
lem for public transportation network (Hendrickson
and Plank 1984, Sumi et al. 1990). However, no gen-
eral framework for practical size networks has been
developed to date, and existing frameworks for urban
networks, such as the hyperpath graph-theoretic
framework (e.g. Gendreau l984, Nguyen and
Pallottino 1988, Spiess and Florian 1989, Wu et al.
1994), are not directly applicable since they are
intrinsically static and do not take into account the
time-tables.

We consider in this paper a new graph-theoretic
framework for the passenger assignment problem that
encompasses simultaneously the departure time and
the route choice dimensions. The proposed frame-
work is built upon the central concept of the path
available capacity that allows us to capture the flow
priority aspect. This latter, induced by the implicit
FIFO rule that binds passengers at every access
point to the transit network, has not been taken into
account explicitly in previous models, although sim-
ilar properties were analyzed in Carey (1992). Var-
ious illustrative examples highlight the distinctive
characteristics of the problem considered. Finally we
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provide a formulation of the user-optimal assign-
ment problem and suggest a computational proce-
dure for determining an equilibrium flow based on
asymmetric boarding penalty cost functions. A dis-
tinct direction of research based on the concepts of
strategic equilibrium flow is investigated in Marcotte
and Nguyen (1998).

1. The Public Transportation
Network and the Space-Time
Graph

We will first describe the basic transportation net-
work. Consider a set of transit lines � = �L1�L2� � � � ,
Ll�, where every line is defined by a sequence of trips
which cover the same itinerary in different scheduled
times. Each itinerary is a sequence of geographical
locations—bus stops or railway stations—referred to
in the sequel as transit nodes. To each trip is associ-
ated a carrier with a given capacity and a reasonably
reliable timetable, i.e., a pair of arrival and departure
times for every transit node of the itinerary. Origins
and destinations are connected to the transit nodes by
walking links.

To be able to mathematically describe the com-
muters’ departure times and itinerary choices on this
network, we introduce the following space-time graph
G = �O∪D∪N�A
. O and D are respectively the set
of time-invariant origins and destinations, N is the set
of space-time nodes, and A is the set of space-time
arcs.

Each node i ∈ N represents a transit node at a par-
ticular time t�i
. An arc �i� j
 ∈ A describes a move-
ment departing the tail i at time t�i
 and arriving
at the head j at time t�j
, and t�j
 ≥ t�i
. Arcs
may be divided into two categories. The first group
includes:
• in-vehicle arcs representing the portion of a trip
departing from i at time t�i
 and arriving at j at time
t�j
;
• access arcs, where i is an origin and j is a transit
node in the neighborhood of i;
• egress arcs, where i is a transit node and j is a des-
tination in the neighborhood of i;
• walking arcs, where i and j are two neighboring
transit nodes.

The second group includes arcs that represent move-
ments in time only (i.e., i and j represent the same
transit node), such as:
• boarding arcs, where i is the head node of an access
or a walking arc and j is the tail node of an in-vehicle
arc;
• leaving arcs, where i is the head node of an in-
vehicle arc and j is the tail node of an egress or a
walking arc;
• stationary arcs, where i and j are respectively the
head and the tail nodes of in-vehicle arcs representing
the same trip;
• transfer arcs, where i and j are respectively the head
and the tail nodes of in-vehicle arcs representing dif-
ferent trips.

To every access, egress, and walking arc �i� j
 is
associated a walking time ��i� j
. Each transit node s

is described by a bipartite subgraph B�s
= �Hs�Ks�As


of the space-time graph G, where Hs = �i � i is the head
node of an access arc, or an in-vehicle arc, or a walk-
ing arc�, Ks = �j � j is the tail node of an in-vehicle arc,
or an egress arc, or a walking arc�, and As = ��i� j
 �
i ∈Hs� j ∈ Ks� �i� j
 is a boarding arc, or a leaving arc,
or a stationary arc, or a transfer arc� (see Figure 1).

A trip is described on this space-time graph by an
alternating sequence of stationary and in-vehicle arcs,
and a passenger’s route from an origin o to a destina-
tion d is described by a path �o� i1� � � � � ik� d� starting
at o at time �t�i1
−��o� i1

 with an access arc �o� i1


Figure 1 Bipartite Subgraph Associated with a Transit Node
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and reaching d at time �t�ik
+��ik� d

 with an egress
arc �ik� d
. The subpath �i2� � � � � ik−1� is partitioned into
trip segments connected together, either by a transfer
arc, or by a sequence of leaving, walking, and board-
ing arcs. Note that the space-time graph introduced is
acyclic, since arcs �i� j
 with t�i
= t�j
 are all included
in various acyclic bipartite subgraphs and origins are
separated from destinations.

To explicitly capture the implicit FIFO rule that
binds passengers at every transit node s, we consider
in the sequel that the set of arcs incident into each
node j ∈ Ks—the backward star S−�j
 of node j (set of
arcs incident into j)—is an ordered set

S−�j
= ��i0� j
�∪ ��i1� j
� �i2� j
� � � � � �in� j
�� (1)

where �i0� j
 is a stationary arc, if such an arc exists,
n= �S−�j
�, and

t�i1
≤ t�i2
≤ · · · ≤ t�in
� (2)

Passengers arriving with the carrier and staying for
the next leg correspond to the flow on the station-
ary arc, while the other passengers share the residual
capacity of the carrier in the order of their respective
arrival times at transit node s.

Consider the morning peak period. Passengers are
subdivided into subgroups indexed by g. Passengers
of the same group g share the same desired arrival time
interval �t−�g
� t+�g
� at their respective destinations.
In what follows, the demand for any given origin-
destination pair �o�d
 and subgroup g is denoted by
� �o�d�g
.

Each passenger must decide when to leave his
origin and which transportation service to use to
reach his destination ideally within the desired time
interval.

2. Capacity and Flow Priority
In contrast to the road network case, where it is usu-
ally considered that the cost of using an arc is an
increasing function of traffic flow, the number of pas-
sengers aboard a vehicle of a public transport network
does not have a direct influence on the length of a
trip, which is assumed to be constant. Nevertheless,
congestion may force a passenger to take a lengthier

path to destination because the vehicle that he plans
to board may not have any available space. It can
be seen that an inherent characteristic is the asym-
metric aspect of passengers inter-influence, and this
must be explicitly dealt with. We first focus on the
approach with explicit capacity constraints and then
exploit the possibility of approximating these capacity
constraints with appropriate penalty cost functions.
We also adhere to the continuous approximation of
passenger flow for practical reasons, although a dis-
crete formulation may seem more suitable for small
networks.

Let hgp denote the portion of the demand � �o�d�g


traveling on path p ∈ Pod, where Pod is the set of all
paths connecting the pair �o�d
. The usual equations
of conservation of flow are∑

p∈Pod
hgp =� �o�d�g
� ∀�o�d�g
�

hgp ≥ 0� ∀p ∈ Pod� ∀�o�d�g
�
(3)

The following inequalities express the usual capacity
constraints:

∑
�o�d�g


∑
p∈Pod

!aph
g
p ≤ ua� ∀a ∈Av� (4)

where Av is the set of in-vehicle arcs or stationary
arcs, ua is the capacity of the vehicle associated with
arc a, and !ap = 1, if path p traverses arc a and 0
otherwise. A feasible flow is a vector h = �h

g
p � satisfy-

ing the set of constraints (3), and a feasible flow is
called compatible if it also satisfies equation (4). Let %
denoted the set of feasible flows h, and let & ⊆ % be
the set of compatible flows. It will be assumed that &
is nonempty. Let xgda denote the partial flow associated
with the pair �g�d
 on arc a ∈A,

xgda =∑
o∈O

∑
p∈Pod

!aph
g
p � ∀a ∈A� (5)

The total flow ya on arc a is then

ya =
∑
g

∑
d∈D

xgda � (6)
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x = �x
gd
a � and y = �ya� are feasible if h is feasible and

compatible whenever h is itself compatible.

2.1. Generalized Arc Costs and Path Costs
To model the passenger’s choice of a departure time
and a route, we must define a path disutility cost that,
in addition to the usual perceived path travel time,
also includes penalty costs associated with an early
departure as well as early or late arrival. To design the
early and late departure costs, we will first determine
a free-flow latest-departure-time )�o�d�g
 that represents
the ideal time to leave origin o to get to destination d

within the time interval �t−�g
� t+�g
�, for each triplet
�o�d�g
.

The departure time )�o�d�g
 is determined by
identifying the subset of paths Podg ⊆ Pod of the space-
time graph that reach destination d within the time
interval indexed by g. This can be achieved with a
backward visit of the time-space graph starting from
the set of nodes

Q += �i ∈ N � �i� d
 ∈ S−�d
,

t−�g
 ≤ t�i
+��i�d
≤ t+�g
��

assumed nonempty followed by the scanning of the
forward star S+�o
 (set of arcs incident out of o) of
every origin o ∈ O. The computation of )�o�d�g
 for
a given pair �d�g
 may be carried out with the fol-
lowing simple connectivity checking procedure on the
space-time graph:

Procedure. Latest_departure_time �g�d� t−�g
�
t+�g
��
,
begin

Q += �i ∈ N � �i� d
 ∈ S−�d
� t−�g
≤ t�i
+��i�d


≤ t+�g
�,
for i ∈ N , label�i� += 0,
for i ∈Q, label�i� += 1, for o ∈O� label�o�= 1,
repeat

fetch u ∈Q;
Q +=Q− �u�;
for each �i�u
 ∈ S−�u
 such that label�i�= 0
begin

insert i into Q;
label�i� += 1

end

until Q =�;
for o ∈O� )�o�d�g
= max�t�u
−��o�u
�
�o�u
 ∈ S+�o
� label�u�= 1�

end.

Once )�o�d�g
 is determined, we can define a penalty
cost for every access arc �o� j
 which depends on the
difference between the actual departure time t�j
−
��o� j
 and the latest-departure-time. For instance

U
odg
oj = max�0�)�o�d�g
− t�j
+��o� j

�0�� (7)

where 0 is a positive scalar. Note that whenever
)�o�d�g
< t�j
−��o� j
, then no penalty is incurred at
the origin although the arrival time at the destination
does not belong to the desired time interval.

Similarly, late and early arrival at destination
also induces a penalty cost (see, for instance,
De Palma et al. 1983, Friesz et al. 1993). Thus, for
every egress arc �i� d
 we have

U
g

id =


21�t

−�g
− t�i
−��i�d

� if t�i
+��i�d
 < t−�g
�

22�t�i
+��i�d
− t+�g

� if t�i
+��i�d
 > t+�g
�

0� otherwise�

(8)

where 22 ≥ 21 > 0 are user defined scalars. At
this point, the cost C

g
p of any given path p =

�o� i1� � � � � ik� d�∈ Pod for passengers of a group g, may
be defined unambiguously as the sum of the lengths
of its arcs and the penalty terms associated with the
access and the egress arc

Cg
p = ∑

�i�j
∈p
l�i� j
+Ug

p �

where l�i� j
 is a generalized cost given to each arc
�i� j
 to differentiate the perceived value of time of the
various elements composing a trip, and

Ug
p = U

odg
oi1

+U
g
ikd
� (9)

It should be noted here that the latest-departure-
time path itself is not relevant at this stage. Only the
latest-departure-times are needed for calibrating the
penalty costs U

odg
oj . However, it is worth mentioning

that travel times in transit networks, in general, do
not satisfy the first-in-first-out property and thus later
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Figure 2 Path with Cycle

departure may arrive earlier (i.e., an express line ver-
sus a regular one). This may result in generating paths
that may contain one or several cycles. Such paths
are not always unrealistic. For instance, consider the
example given in Figure 2, with the three lines:

l1=��a�b
��b�c
�� l2=��c�b
��b�d
�� l3=��c�d
��

A passenger going from a to d may follow one of the
three paths:

1. line l1 to b then l2 to d,
2. line l1 to b then c, and l3 to d,
3. or line l1 to b then c, and l2 back to b then d.

The last path goes through node b twice. Such a path
is perfectly reasonable in many cases. For instance,
assume that l2 is a congested line and the risk of being
unable to board it at b is much higher than at c. Then
making a detour to node c to ensure a place on the
carrier of l2 would produce the above cycle. Similarly,
if line l3 is a congested express line, then a passenger
may accept the risk of making an unsuccessful detour
to c to board the carrier of l3. The boarding penalty
costs, introduced in §3.1, may indeed allow generat-
ing such paths.

Figure 3 Priority and Equilibrium Flow

2.2. Available Capacity and Flow Priority
One may interpret the assignment of passengers on
a public transport network as an n-person noncoop-
erative game, and a Wardrop (1952) equilibrium flow
as a flow such that no individual can improve his
travel cost by unilaterally switching to another feasi-
ble path considering the other passenger’s choices as
fixed. With the FIFO rule at the transit nodes, path
feasibility cannot be defined solely in terms of the
residual capacity of the carriers. For instance, consider
the example given in Figure 3.

In Figure 3, assume that the capacity of every car-
rier is 20, and a single group of 21 passengers going
from o to d with the desired arrival time interval
�9h00�9h15�. Access and egress arcs are assumed to
have zero length. With 0= 1, the latest departure time
) = 8h45 induces penalty costs Uoc = 30� Uob = 15, and
Uoa = 0 on the access arcs, and Ukd = Uld = 0 on the
egress arcs. The shortest path is p1 = �o� a� e�h� j� k�d�,
with Cp1

= 30. Let p2 = �o� b� f � i� j� k�d� and p3 =
�o� c�g� l� d� with Cp2

= 60 and Cp3
= 75, respectively.

If feasibility is defined with respect to the usual
arc residual capacities, then the flow �hp1

�hp2
�hp3

� =
�20�0�1� satisfies the above definition of equilibrium,
since arc �j� k
 is saturated and thus the passenger on
p3 cannot improve his current traveling cost by mov-
ing either to p2 or p1. However, any seat occupied
at stop j by a passenger transferring from line 1 is
available to passengers boarding line 2 at the previous
stop f (FIFO rule). Consequently, a passenger on p3

may improve his cost by switching to path p2 and
prevent one passenger from p1 to board at stop j.

This leads to the introduction of the concept of
available capacity to capture the priority order that
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exists between the passengers already in the transit
carrier and those trying to board it, on the one hand,
and between passengers entering the boarding queue
at different times, on the other hand. Let a= �i� j
 be
an in-vehicle or a stationary arc, for a given flow h;
the residual capacity of a ∈A is defined as usual as

ra = ua−ya�

Consider the bipartite subgraph B�s
 = �Hs�Ks�As

corresponding to a given transit node s, and a node
j ∈ Ks , that is, the tail of an in-vehicle arc a of a
given trip. Recall that for such a node, the set of
arcs incident into j is identified by the ordered set
S−�j
 (Equations (1) and (2)). The available capacity
for every boarding or transfer arc �im� j
 of S−�j
 is
defined as

qimj = ua−
m∑
k=0

yikj� m= 1� � � � �n� (10)

where n = �S−�j
� and flow yi0j = 0 if the stationary
arc �i0� j
 does not exist (j is the beginning of a trip).
This set of available capacities represents the sharing
of the carrier’s residual capacity among passengers
according to their priorities at node j.

Let Av�p
 denote the set of in-vehicle and stationary
arcs of p, and Ab�p
 that of boarding and transfer arcs.
The residual capacity Rp of p is

Rp = min�ra � a ∈Av�p
�� (11)

and the available capacity Qp of p is

Qp = min�qa � a ∈Ab�p
�� (12)

It can be seen that

Rp ≤Qp� ∀p ∈ Pod� ∀�o�d
�
Indeed, consider a transfer or boarding arc �im� j
 ∈
Ab�p
 of p and let �j� l
 ∈ Av�p
 denote the in-vehicle
arc that immediately follows �im� j
 on p. The residual
capacity rjl of �j� l
 is:

rjl = ujl−yjl = ujl−
n∑

k=0

yikj

≤ ujl−
m∑
k=0

yikj = qimj�

and thus

Rp ≤ min�qa � a ∈Ab�p
�=Qp�

Consequently, a saturated path p (with zero residual
capacity) may still have a positive available capacity.
For the example in Figure 3, it can be seen that with
the flow �hp1�hp2�hp3�= �20�0�1�, the capacities of the
respective paths are

capacity p1 p2 p3

residual Rpi
0 0 19

available Qpi
0 20 19

hence, a new passenger on path p2 would force a user
on path p1 to switch to either p2 or p3.

3. Equilibrium Flow and Pitfalls
We now have all the ingredients needed to analyze
the traditional equilibrium model. First, as discussed,
it is necessary to redefine the path feasibility as fol-
lows: a path is feasible if and only if its available capacity
is positive. With this in mind, the following standard
definition of an equilibrium flow may be stated.
Definition. A compatible flow is an equilibrium

flow if no passenger can improve his traveling cost by
unilaterally switching to another feasible path, while
the choices of all other passengers are fixed.

It is worth noting here that the above is the stan-
dard static definition of equilibrium since the path
feasibility is defined with respect to the fixed cur-
rent flow, thus any possible forced change due to a
unilateral path switching is ignored. Similar consid-
erations in terms of the path costs are discussed in
Smith (1979).

Assume that a passenger is considering unilater-
ally switching from path p to path q and the current
available capacity of q is zero and all the saturated
boarding or transfer arcs of q belong to p as well. In
this case, it is important to distinguish two modelling
options:

1. q remains infeasible for this passenger even if he
contributes to the flow of the saturated arcs,

2. q is feasible for this particular passenger since
the arcs of q that are not in p have positive available
capacity.
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We refer to the first option as the additional passen-
ger option and the latter as the switching passenger one.
Going back to the example in Figure 3, the two model-
ing options produce drastically different results. With
the additional passenger model, it can be seen that
flow �hp1

�hp2
�hp3

� = �0�20�1� satisfies the above def-
inition of equilibrium as the minimum cost path p1

is infeasible for any additional passenger. Note that in
contrast to the Wardrop equilibrium in ordinary vehi-
cle networks, the two utilized paths are not the mini-
mum cost paths here.

With the switching passenger model the existence
of an equilibrium flow may not be warranted. Indeed,
in the same example, any feasible flow that does not
saturate arc �j� k
 is trivially not an equilibrium flow
and any feasible flow �hp1

�hp2
�hp3

� = �20− x�x�1� is
also not an equilibrium flow, since whenever x > 0� p1

is always feasible for any passenger on p2, and when
x = 0, the passenger on p3 can switch to p2. Conse-
quently there is no equilibrium flow.

It seems therefore that the additional passenger
model is well suited for networks with priority and
hard capacities. Let Qp�h
 denote the available capac-
ity of path p ∈ Pod when the path flow is h. Also define

K�g�p
= {
p′ � p′ ∈ Pod and C

g
p′ < Cg

p

}
�

as the set of paths that dominate path p, and

Q̃p�h
=


∑

p′∈K�g�p

Qp′�h
� if K�g�p
 �= ��

0� otherwise�
(13)

In terms of the pseudo-costs Q̃p�h
, we may again
state the standard Wardrop’s equilibrium conditions
as: a compatible flow h∗ ∈& is an equilibrium flow if
it satisfies

hg∗p = 0 if Q̃p�h
∗
 > 0� ∀p ∈ Pod� ∀g� (14)

In the next subsection, we propose a variational
inequality formulation based on arc penalty cost func-
tions that simultaneously handle both the capacity
and the flow priority characteristics. This approach
leads to a more practical computational procedure
that obviates the explicit enumeration of paths con-
necting each origin-destination pair required by the
above complementarity problem.

3.1. A Penalty Approach
Consider the set S−�j
 (Equations (1) and (2)) of arcs
incident into the tail node j of an in-vehicle arc �j� k
.
The objective here is to prevent individuals from
taking infeasible paths in terms of available capaci-
ties. Let us associate a penalty cost Wa�y
 with every
boarding or transfer arc a= �im� j
 ∈ S−�j
� m > 0. For
example, the following standard functional form may
be used

Wa�y
 =
{
<a

([ m∑
k=0

yikj −=aua

]+)>
�

a= �im� j
 �m= 1�2� � � � �n� (15)

where <a�=a, and > are positive scalars, and �z�+ =
max�0� z�. For 2 ≤ > < �� Wa�y
 is continuously dif-
ferentiable. Therefore, in addition to the usual wait-
ing time l�im� j
 = t�j
− t�im
, a passenger also incurs
an asymmetric boarding penalty cost. The designed
asymmetry reflects the fact that the flow yim−1j

con-
tributes to the cost incurred by yimj while there is no
reciprocal impact and this is clearly the desired objec-
tive. Note also that the penalty costs associated with
the boarding arcs implicitly take care of the capacity
constraint (4). The cost of a path p ∈ Pod� C

g
p �y
 (or

C
g
p �h
, since y is a function of h), incurred by a trav-

eller of group g becomes

Cg
p �h
= Cg

p �y
=
∑

�i�j
∈p
l�i� j
+Ug

p +Wp�y
� (16)

where the arrival and departure penalty cost Ug
p is

defined in Equation (9) and the boarding penalty cost
Wp�y
 is

Wp�y
=
∑

a∈Ab�p


Wa�y
� (17)

With the proposed cost structure, the determination
of an equilibrium flow h∗ = �h

g∗
p � may now be formu-

lated as a variational inequality problem (Smith 1979,
Dafermos l980):

Find h∗ ∈% satisfying �h∗ −h
TC�h∗
≤ 0�

∀h ∈%� (18)

where C�h∗
 = �C
g
p �h∗
�. The existence of a solution

h∗ is ensured since % is compact and convex, and
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C�h
 is continuous by construction (Kinderlehrer and
Stampacchia l980). Because of the asymmetry men-
tioned above, C�h
 is not a gradient mapping over %
and thus the equilibrium problem cannot be reformu-
lated as a standard convex optimization problem.

With the various penalty costs introduced, the cost
on arc a= �i� j
 ∈A incurred by each unit of flow x

gd
a

is

cgda �x
= l�i� j
+



U
odg
oj � if i = o ∈O�

U
g
id� if j = d ∈D�

Wa�y
� if a is a boarding

or a transfer arc,

0� otherwise�

(19)

The variational problem (18) may be rewritten in
terms of the partial arc flows x = �x

gd
a � as

Find x∗ ∈ A satisfying �x∗ −x
T c�x∗
≤ 0�

∀x ∈ A� (20)

where c�x
 = �c
gd
a �x
� and A is the set of feasible

flows x.
Most existing solution algorithms for problem (20)

require some sufficient conditions on the monotonic-
ity of the mapping c�x
 to converge, although these
properties seldom hold in practical applications (Fisk
and Nguyen 1982). Hence, existing algorithms for
the asymmetric traffic equilibrium problem cannot be
applied directly here. Nevertheless, good heuristics
based on existing methods can be definitely designed
to solve problem (20). One possible solution approach
is suggested in the next subsection.

3.2. A Solution Method
Since we have a polyhedral ground set A , it seems
advantageous to apply a simplicial decomposition
strategy which has long been employed in mathe-
matical programming (Von Hohenbalken 1977) and
in many traffic assignment applications (Hearn et al.
1987, Larsson and Patriksson 1992, Patriksson 1994).
This allows us to formulate the nonmonotone varia-
tional inequality problem (20) as an equivalent non-
linear minimization problem defined on the convex
hull of a subset of extreme points (Smith 1983a, 1983b,
Hearn et al. 1984). Let S denote the convex hull of a

subset �v0�v1� � � � �vk� of extreme points of A ; consider
the variational problem

Find x∗ ∈ S satisfying �x∗ −x
T c�x∗
≤ 0� ∀x ∈ S� (21)

and the family of Smith’s (1983a) functions:

Z�x
=
k∑
i=0

���x−vi
T c�x
�+
C� ∀x ∈ S� (22)

for any integer C≥ 1. It can be shown that

Z�x∗
= min
x∈S

Z�x
= 0�

Note that for 2 ≤ C <�� Z�x
 is differentiable every-
where and its gradient is

DZ�x
=
k∑
i=0

C���x−vi
T c�x
�+
C−1��x−vi
TDc�x
+c�x

�

In view of the above, consider the following general
scheme.
Procedure. Equilibrium Assignment �E�C

Step 0. (initialization)

Select v0, set F += �v0�,x0 += v0,k += 0.
Step 1. (extreme point/column generation)

Determine

vk+1 = argmin
x∈A

�x−xk
T c�xk
�

If �xk−vk+1
T c�xk
≤ E��vk+1
T c�xk
�, stop with
x∗ = xk �E-equilibrium
.
Otherwise set F +=F∪ �vk+1�, k += k+1.

Step 2. (master problem)
Determine the global minimizer �∗ of

minZ��
=
k∑
i=0

���V�−vi
T c�V�
�+
C

subject to
k∑
i=0

�i = 1

�i ≥ 0� ∀i = 0�1� � � � � k�

where V = �v0�v1� � � � �vk�.
Set xk =V�∗. Updated the set F and go to
Step 1.
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Note that this scheme may also be interpreted as a
column generation scheme. It is well known that the
linear programming subproblem of Step 1 reduces to
a shortest path problem, for which various very effi-
cient algorithms may be implemented for large scale
networks (Gallo and Pallottino 1986, Mondou et al.
1991). It should be noted here that computing short-
est paths (with possible static cycles) in a dynamic
network is completely equivalent to computing clas-
sical shortest paths in the corresponding space-time
network (Pallottino and Scutellà 1998). The main dif-
ficulty resides rather in the determination of a global
minimizer of the generally nonconvex subproblem in
Step 2 and the theoretical convergence of the whole
procedure depends naturally on the convergence of
this step and on the updating rule adopted for the
set of extreme points F. For added insights on these
topics we refer the reader to Hearn et al. (1985, 1987).

At first view, it seems that one has to work in the
space of partial flows �xgda � and this will severely limit
the size of the problem that can be solved. We will
show below that even if the variational problem (20)
cannot be written in the space of total arc flows, all
the computations needed for the above algorithm can
be carried out in that space.

First, note that the definition (19) of arc cost cgda �x

allows us to decompose the product xT c�x
 into four
terms,

xT c�x
 = ∑
a∈A

laya+
∑
a∈Ab

Wa�y
ya

+∑
g

∑
d∈D

[∑
o∈O

∑
�o�j
∈S+�o


U
odg
oj x

gd
oj

]

+∑
g

∑
d∈D

[ ∑
�j�d
∈S−�d


U
g
jdx

gd
jd

]
�

where Ab ⊂ A is the set of boarding and transfer
arcs. The third term is the total penalty cost due to
early departures from all origins. The last term is the
total penalty cost due to early or late arrivals at des-
tinations. Note that only the second term contains
flow dependent cost functions. This leads to further
decomposition. Indeed, let �y0�y1� � � � �yk� denote the
total arc flows corresponding to the extreme flows
�v0� � � � �vk�. The three other terms associated with a

given extreme point vi may be collected in a single
term Gi:

Gi = ∑
a∈A

lay
i
a+

∑
g

∑
d∈D

[∑
o∈O

∑
�o�j
∈S+�o


U
odg
oj �v

gd
oj 


i

]

+∑
g

∑
d∈D

[ ∑
�j�d
∈S−�d


U
g
jd�v

gd
jd 


i

]
� (23)

It is important to note that Gi� i = 0�1� � � � � k� can be
computed sequentially at the same time as the net-
work loading to produce vi. This also implies that
shortest paths calculations must be carried out from
the destination in contrast to the usual origin-based
method.

Considering the kth iteration of the above proce-
dure, the computation of the objective function of the
subproblem in Step 2 and its gradient can be carried
out as follows. For a given �= ��j�, let ȳ =∑k

j=0 �jy
j .

Then taking into account the definition (23),

Z��
=
k∑
i=0

��Ti�
+
C =

k∑
i=0

���V�−vi
T c�V�
�+
C

can be rewritten as

Ti =
∑
a∈Ab

Wa�ȳ
�ȳa−yia
+
(

k∑
j=0

Gj�j

)
−Gi� (24)

Similarly, the gradient of Z��
 may be expressed as

DZ��
=
k∑
i=0

C��Ti�
+
C−1DTi�

where the sth component of DTi can be expressed as

�DTi
s =
∑
a∈Ab

(
�ȳa−yia


HWa�ȳ

H�s

+Wa�ȳ
y
s
a

)
+Gs�

Recall that for a boarding or transfer arc a= �im� j
, the
penalty cost Wa�ȳ
 and its gradient HWa�ȳ
/H�s can be
expressed as

Wa�ȳ
 = <a

([ m∑
J=0

ȳiJj −=aua

]+)>

�

HWa�ȳ


H�s
= <a>

([ m∑
J=0

ȳiJj −=aua

]+)>−1
m∑
J=0

ysiJj �

These developments clearly show that the master
problem in Step 2 can be solved in the space of
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Figure 4 An Illustrative Example

total flows �y0�y1� � � � �yk� and hence only these flows
must be stored during the execution of the whole
procedure. This is a clear advantage for practical
applications.

3.3. An Illustrative Numerical Example
Consider the network in Figure 4 where the access
and boarding arcs are combined into a single arc.
There are 4 origin-destination pairs ��1�3
� �1�4
,
�2�3
� �2�4
�, and one group of passengers with the
arrival time interval �8h45�9h00�. The traffic demand
is �10�10�10�10�, and the capacity of every carrier is
u = 20. The arc costs are given in Table 1 for <a = 1,
=a = 0�80 (thus =aua = 16) for every boarding arc, and
> = 2.

For this application, the subproblem in step 2 with
C= 2 is solved with a linear approximation algorithm
and PARTAN direction (see, for example, Luenberger
1984, or Leblanc et al. 1985, Florian et al. 1987, Arezki
and Vliet 1990 in relation to the symmetric cost traffic
assignment problem). Solving the above assignment
problem produces the E-equilibrium �E= 0�0001
 solu-
tion described in Table 2. Note that the flows y8�9 =
21 and y10�13 = 21�472 exceed the capacity of the
respective arcs �u = 20
. One may indirectly enforce
the capacity constraints by choosing appropriate val-
ues for the parameters of the arc penalty functions
�<a�=a� >
.

It is interesting to note that, for this example, an
exact equilibrium solution can be computed as the
limiting solution to the above variational problem
(21). Furthermore, this equilibrium solution is not a
system optimum solution (Table 3) that one would
expect to obtain with a standard approach for an

Table 1 Arc Costs

Arc �i� j� Ca

1 (1, 5) 15+ ��x1�5 −16
+�2

2 (1, 8) ��x1�8 +x6�8 −16
+�2

3 (2, 6) ��x2�6 −16
+�2

4 (2, 7) 15+ ��x2�7 −16
+�2

5 (5, 10) 30
6 (6, 8) 5
7 (7, 16) 60
8 (8, 9) 5
9 (9, 11) 5

10 (9, 12) 5+ ��x9�12 −16
+�2

11 (10, 13) 10
12 (11, 10) 5+ ��x11�10 +x5�10 −16
+�2

13 (12, 14) 20
14 (13, 3) 0
15 (13, 15) 15
16 (14, 3) 0
17 (15, 4) 0
18 (16, 4) 0

Table 2 An �-Equilibrium Solution

Path Flow hp Path Description Cp lp

5.236 {1, 5, 10, 13, 3} 55.000 55
0.000 {1, 8, 9, 11, 10, 13, 3} 79.944 25
4.764 {1, 8, 9, 12, 14, 3} 55.000 30

10.000 {1, 5, 10, 13, 15, 4} 70.000 70
0.000 {1, 8, 9, 11, 10, 13, 15, 4} 94.944 40
0.000 {2, 6, 8, 9, 11, 10, 13, 3} 60.000 30

10.000 {2, 6, 8, 9, 12, 14, 3} 35.056 35
6.236 {2, 6, 8, 9, 11, 10, 13, 15, 4} 75.000 45
3.764 {2, 7, 16, 4} 75.000 75

Table 3 Equilibrium and System Optimum Solution

Equil. hp Sys. Opt. hp Path Description Cp lp

5 0 {1, 5, 10, 13, 3} 55 55
0 10 {1, 8, 9, 11, 10, 13, 3} 80 25
5 0 {1, 8, 9, 12, 14, 3} 55 30

10 10 {1, 5, 10, 13, 15, 4} 70 70
0 0 {1, 8, 9, 11, 10, 13, 15, 4} 95 40
0 0 {2, 6, 8, 9, 11, 10, 13, 3} 60 30

10 10 {2, 6, 8, 9, 12, 14, 3} 35 35
5 0 {2, 6, 8, 9, 11, 10, 13, 15, 4} 75 45
5 10 {2, 7, 16, 4} 75 75

equilibrium assignment problem with constant arc
costs and arc capacities (Hearn 1980, Patriksson 1994).
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3.4. Conclusion
We have developed in this paper a graph-theoretic
framework for the passenger assignment problem that
encompasses simultaneously the departure time and
the route choice dimensions. The proposed dynamic
framework is built upon the new concept of path avail-
able capacity that allows us to capture the flow priority
induced by the implicit FIFO rule that binds passen-
gers at every access point to the transit network. No
such general framework has been developed to date,
and existing frameworks for urban networks are not
directly applicable since they are intrinsically static.

From the dynamic framework, distinctive features
of the passenger routing are investigated and illus-
trated. A passenger equilibrium flow model is then
defined and a mathematical formulation suggested.
A computational algorithm for the determination of
an equilibrium flow based on a penalty approach is
also described. Development and analysis of conver-
gent algorithms for large scale networks based on the
described general procedure are in progress, and an
integration of the present model with that in Nguyen
and Pallottino (1988) seems to be a natural extension.
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