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Abstract: In this paper we will present class of new lower bounds for the Quadratic
Semi-Assignment Problem (QSAP). These bounds are based on recent results about
polynomially solvable cases, in particular we will consider the QSAP's whose quadratic
cost coefficients define a reducible graph. Several lower bounds will be computationally
compared, moreover we will present a method which improves these bounds by means of
Lagrangean decomposition.
Keywords: Quadratic Semi-Assignment Problem, Lower Bounds, Lagrangean
Decomposition.

R�sum�: Dans ce papier on pr�sente une classe de nouvelles limites inf�rieures pour le
probl�me de semi-couplage quadratique (QSAP). Cettes limites se basent sur les r�cents
r�sultats � propos de cases solvables en temps polynomial, en particulier on consid�re les
QSAP dont les coefficients quadratiques definent un graph r�ducible. Plusieurs limites
inf�rieures seront compar�es computationellement; finalement on pr�sente  une nouvelle
m�thode pour am�liorer les limites propos�es en utilisant une d�composition de Lagrange.
Mots-cl�s: Semi-Couplage Quadratique Probl�me, Limites Inf�rieures,  D�composition
de Lagrange.
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1. Introduction

The Quadratic Semi-Assignment Problem (QSAP), has an important role in modelling many

practical applications. For example clustering and partitioning problems [9], assignment of

professors to departments [5], some scheduling problems [3]. Sometimes the model has been

complicated to take into account "real life" factors as in [4, 15].

The QSAP is well known to be NP-hard [13]; some lower bounds for the problem have been

devised in [6] and [5]. Polynomial classes are presented in [1, 2] studying distributed computing

systems. In [10] a lower bound based on these ideas is applied to a branch and bound algorithm. In

[11] the idea of new lower bounds is presented and the reported preliminary results show that the

new bounds favourably compare with the one proposed in [10]. In this paper we intend to explore

in depth the possibilities offered by this kind of approach.

In order to illustrate the problem we will use the following application example: consider a

distributed computing system with p not necessarily identical processors, and n processes to be

assigned to the processors. Let us call N the set of processes and M the set of processors. The

following data are known:

- during the computation processes i and j exchange fij units of information;

- the time needed to move one unit of information from processor s to processor r isÊdrs;

- the computation time required by process i when it runs on processor s is eis.

The mapping problem is that of assigning the processes to the processors so that the global time

spent by the system (execution and communication time) is minimized. Let P be the set of all the

feasible assignment functions r:N®M which associate a processor r(i)ÎM to each process iÎN;

the problem can be formulated as a QSAP as follows:
Z = min { å

i,jÎN
Ê fijdr(i)r(j) + å

jÎN
Ê eir(i), rÎP}. (1.1)
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The non zero fij coefficients define the communication pattern between processors that is usually

represented by an undirected graph. As presented in [11] the optimal mapping can be found in

polynomial time when this graph belongs to the class of reducible graphs.

The QSAP can be also formulated in a more general way: considering the matrix qijhk i,jÎN,

h,kÎM, the problem is:
Z = min { å

i,jÎN
Ê qijr(i)r(j), rÎP}. (1.2)

The paper is organized as follows. In section 2 we will introduce the class of reducible graphs and

devise a polynomial algorithm for solving instances of QSAP whose associated graph is reducible.

In section 3 we will exploit these results  to provide lower bounds. A generalization of this class of

bounds which derive from a Lagrangean decomposition of the problem will be introduced in section

4. Finally in section 5, some preliminary computational results will be reported.

2. The class of reducible graphs

Consider the undirected graph G(N,A) where n=|N| and m=|A|; G is reducible if and only if it can

be reduced to a single node by the following  operations:

- Tail reduction

let i be a node of degree 1 (i.e. there is only one arc incident with node i) and (j,i) be the arc

connecting node i to the rest of the graph G. The graph G can be reduced to a new graph G'

where node i and arc (j,i) have been deleted (see fig. 1). We will denote with Tail(i) the above

reduction operation.
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- Series reduction

let i be a node of degree 2 and let (i,j) and (i,h), j¹h, the two arcs incident with i; the graph G can

be reduced to a new graph G' obtained from G by eliminating node i, arc(j,i), arc (i,h) and

adding a new arc (j,h) (see fig. 2). This operation is denoted by Series(h, i, j).
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fig. 2

- Parallel reduction

let a=(i,j) and a'=(i,j) be two ÒparallelÓ arcs of graph G. The graph can be reduced to a new

graph G' with a single arc between nodes i and j (see fig. 3). This operation is denoted by

Parallel(i, j).
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fig. 3

It is easy to see that the class of reducible graphs is a proper extension of the class of series-

parallel graphs, which are reducible to a single arc by a sequence of parallel and series reductions

([16]). For example, trees are included in the class of reducible graphs, although they do not belong

to the series-parallel class.

Let us state some properties of the reducible graphs which will be useful in the rest of the paper.

For further detail we refer to [11].

Property 1

Suppose repeatedly applying reductions to a graph G as far as possible; the graph GÕ obtained is

independent of the sequence of reductions.
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This means that if different reductions are applicable to the same graph, we can break ties arbitrarily

without affecting the final result. This establishes the confluence property of the reduction

operations.

Property 2

A simple reducible graph G  (i.e. without parallel arcs) contains at most 2n-3 arcs.

An algorithm that recognizes reducible graphs can be easily obtained as follows: given an input

graph G, repeatedly apply reductions to G as far as possible; G is reducible if and only if the

resulting reduced graph contains a single node. An algorithm which runs in linear O(m) time is

described in [11].

2.1 A solution algorithm for QSAP on reducible graphs

Consider the undirected graph G(N,A) where the set of nodes N is {1,É,n} (each node represents a

process) and the set of arcs A is determined by the coefficients fij, that is A={(i,j): fij>0 or fji>0}; let

m=|A|. Further on, we assume that G is connected; in fact, if G is not connected, one independent

QSAP for each connected component of G can be identified.

When the graph G is reducible, the corresponding QSAP can be solved in polynomial time.  In

order to carry out the computation of the QSAP optimal solution, we introduce some labels

associated to the nodes and the arcs of G.  In particular we will associate the labels uir "rÎM to

each node iÎN , and the labels virjs "r, sÎM to each arc (i,j)ÎA . Initially these labels are set as

follows:

uir = eir, "iÎN, "rÎM,
virjs = fijdrs+fjidsr, " i, jÎN, "r, sÎM.

Note that initially the labels associated to each node represent the set of all possible processor

assignments for the related process, and their initial value is the execution time of the process on the

different processors. The labels on an arc represent the set of all possible assignments for a pair of

communicating processes; their initial value is the communication time.
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Our solution method consists of updating the labels according to the reduction operations

performed on G.  At the end when G has been reduced to a single node, the minimum label uir

"rÎM t gives the optimal solution value.

The label updating can be described as follows:

- Tail reduction

Let iÎN be a node of degree 1 and (j,i)ÎA be the arc connecting i to the graph G. Labels ujr are

modified as follows, for each rÎM:

ujr = min {uis + visjr, sÎM}. (2.1)

In practice ujr  is modified in order to take into account the best possible assignment for i once j

has been assigned to r.  This operation can be carried out in O(p2) time.

- Series reduction

Let iÎN a node of degree two and let (i,j) and (i,l) be the two arcs incident with i. Labels vjslr are

set as follows, for each r, sÎM:

vjslr = min {vjrit + vitls + uit, tÎM} (2.2)

The new vjslr  takes into account the best possible assignment for i once j and l have been

assigned to r and s, respectively. This operation can be carried out in O(p3) time.

- Parallel reduction

Let a'=(i,j) and a"=(i,j) be two parallel arcs of graph G.  Let v'irjs and v"irjs be the labels

associated to a' and a" respectively. The labels vjslr of the new arc that will substitute a' and a"

in G' are obtained as follows:

virjs = v'irjs + v"irjs, " r, s ÎM.

This operation can be carried out in O(p2) time.

Since at most O(n) reduction operations are applied on a reducible graph G, the overall complexity

of the transformations is O(np3).
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The computation above gives the value of the optimal solution. In order to obtain an optimal

assignment r associated to that value an extra computation is needed. To this end, we store in a

stack the local choices we make in each Series or Tail reduction operation. Note that we do not need

to store any information when executing a Parallel reduction, since this operation does not perform

any assignment.

The information stored in the elements of the stack is the following:

- Tail reduction

let (i,j) and i the arc and the node eliminated by the reduction, and for each v in M denote by i(r)

the index sÎM giving the minimum in ujr in (2.1). We put on the stack a label Tail, the nodes i

and j, and the set {i(r):Êr=1,Ép};

- Series reduction

let (i,j) be the new arc introduced by the reduction and let h be the eliminated node; for each pair

r, s ÎM, denote by h(r,s) the index tÎM giving the minimum in (2.2). We put on the stack a

label Series, the nodes i , j and h, and the set {h(r,s): r,s=1,É,p}.

At the end of the reduction, let (i, r) be the minimum label of the remaining node; we set r(i)Ê= r.

Then, we repeatedly remove elements from the stack and, according to the label Tail or Series, we

perform the following operations:

Tail let r = r(j); set r(i) = i(r);

Series let r = r(i) and s = r(j);  set r(h) = h(r,s).

It is easy to see that r(j) (r(i) and r(j), respectively) has been already assigned when a Tail (Series,

respectively) reduction is considered, hence the above method correctly finds an optimal assignment

r.

3. Subgraph and Partition lower bounds

The existence of sharp and efficiently computable lower and upper bounds is a crucial part of

enumerative algorithms. The problem has been widely studied in the literature; for example [6] and

[5] present efficient methods for solving relaxations of particular formulations of QSAP.
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The algorithm for polynomially solvable cases, presented in section 2, can be applied to obtain

lower bounds. This approach has been partially exploited in [10], where in practice only tail

reductions are performed (i.e. a spanning tree is extracted form G) and in [11], where some lower

bound based on the extraction of reducible subgraphs from G are presented.  In the following, we

will review these methods, and we will present a new bound.

Let G=(N,A) be a non reducible communication graph corresponding to a given QSAP problem;

and let Gr= (N, Ar) be a reducible subgraph of G. We can define a new problem restricted to graph

Gr, in which only communication costs corresponding to arcs in Ar are considered; the objective

function becomes:

å
(i,j)ÎArÊ

Êfijdr(i)r(j) + fjidr(j)r(i) + å
iÎN

ÊeiÊr(i).

Assume that the quadratic costs corresponding to arcs in A\Ar are non-negative: it can be verified

that the optimal solution Zr of the problem restricted to Gr is a lower bound for the original

problem. We call subgraph bound the value obtained in this way.

Consider the partition of the set of edges A\Ar in k subsets A1,É,Ak such that each partial graph Gl=

(N, Al), 1 £ l £ k, is reducible, and the problems restricted to graphs Gl, in which linear costs are set

to zero:

Zl = min { å
(i,j)ÎAl

Êfijdr(i)r(j) + fjidr(j)r(i): rÎP}.

In the light of the above decomposition, the optimal solution value of  (1.1) can be written as:

Z = Z*
r  + å

l

k
ÊZ*

l  ,

where Z*
r   and Z*

l , 1 £ l £ k, are the costs of the optimal solution of (1.1) in the problems defined on

graphs Gr and Gl, 1 £ l £ k. It is easy to see that ZrÊ£ÊZ*
r  and ZlÊ£ÊZ*

l , hence the sum:

L = Zr  + å
l

k
ÊZl £ Z*

r  + å
l

k
ÊZ*

l   =Z



8

is a lower bound for the original problem. We call partition bound the value L obtained as above; it

is easy to see that the restricted problems Gr and Gl= (N, Al), 1 £ l £ k , can be solved with an

overall O(mp3) complexity.

Note that the partition bound can be used also when the non negativity hypothesis of the quadratic

costs is relaxed, while the subgraph bound can be used only if the quadratic costs are non-negative.

Consider the problem of determining the reducible subgraph Gr. In order to obtain a sharper bound,

it is conceivable to search for a subgraph with a large set of arcs; moreover, arcs (i,j) corresponding

to processes that exchange a large amount of information should be preferred. Thus one should

find a reducible subgraph Gr=Ê(N,ÊAr) with maximum weight W(Gr), where

W(Gr) = å
(i,j)ÎAr

Êfij + fji.

The problem of finding the reducible subgraph with the maximum number of arcs  is proved to be

NP-hard in [11]. Thus the reducible subgraph of maximum cardinality or maximum weight cannot

be easily identified. This is not true, however, if we require that Gr is a tree; in fact, many efficient

algorithms for finding a maximum spanning forest in a graph are known [14]. Let us define tree

bound the value obtained solving a restricted problem where Gr is a maximum spanning tree with

respect to the weight W(Gr); this bound can be determined in time O(np2). Moreover, in the

partition bound one may think to consider only subgraphs of  G which are trees; we will call tree

partition bound the value obtained when  Gr  and Gl, 1£l£k, are trees. In this case the resulting

complexity is O(mp2).

In practical applications, it is necessary to devise efficient heuristic algorithms to identify subgraphs

with sufficiently large weight. However it must be observed that the maximum weight subgraph Gr

does not always give the best lower bound. It is conceivable to require Gr to be maximal, i.e. that no

arcs in A\Ar can be added to Ar obtaining a reducible graph. A trivial algorithm to find a maximal

reducible subgraph has a O(nm) complexity; an interesting problem is the one of finding a maximal

reducible subgraph in less than O(nm) time. Similar problems arise when a partition of the graph

into k reducible subgraph is searched.
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Note that in the partition bounds, all the linear costs are considered during the solution of the first

subproblem. A possible variant of the bound could be that of considering the linear costs in

subproblems other than the first one, or partition them among the various subproblems. The study

of the best way of distributing the linear costs among the subproblems can be interpreted in the

framework of the Lagrangean Decomposition techniques which will be discussed in the next

section.

Now we propose a bound which has the same complexity of the partition bound, but it does not

require to find an explicit partition of G. Consider a pair of arcs (i,j) and (i,l), suppose to replace

them with a new arc (j,l). We call this operation L-I reduction. It easy to see that any graph can be

reduced to a single node using tail, series, parallel and L-I reductions. We define the label updating

corresponding to the L-I reduction as follows:

- L-I reduction

Let iÎN a node of degree at least two and let (i,j) and (i,l) be two arcs incident with i. Labels vjslr

are set as follows, for each r, sÎM:

vjslr = min {vjrit + vitls : tÎM}

The new vjslr  takes into account the best possible assignment for i once j and l have been

assigned to r and s, respectively, without considering the linear costs (i.e. labels uir ). This

operation can be carried out in O(p3) time.

Consider the graph G' obtained from G performing a L-I reduction. The optimal solution of the

QSAP associated to G' is not greater than the optimal solution of the QSAP associated to G. This

follows from the fact that the contribution of the new arc (j,l) cannot be greater than the contribution

of the pair (i,j) and (i,l). In order to obtain a lower bound, we repeatedly apply the reduction

operations until G is reduced to a single node. Since at each step of the reduction process the

optimal solution value of the resulting problem does not increase, the minimum label of the last
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remaining node gives a lower bound.  We will call L-I bound  the value obtained using this method;

the  overall complexity of is O(np3). Obviously the value of the bound can be greatly affected by

the selection of the reduction operation to perform at each step, and by the choice of the two arcs

(i,j) and (i,l) a L-I reduction is applied to. In the following we will assume to perform a L-I

reduction only when the others reductions cannot be applied; moreover for a L-I reduction we

always select a node i of minimum degree.

4. Lagrangean decomposition

In this section we will propose a theoretical improvement of our lower bounds, introducing a

Lagrangean Decomposition  technique; in particular, our approach is a slight variant of the one

introduced in [7]. Lagrangean decompositions have been often used in the literature ([8], [12]); this

technique seems to be quite suitable when it allows to exploit the hidden structure of a problem,

decomposing it into efficiently solvable subproblems.

In order to describe our approach, and the properties of the Lagrangean decomposition, it is useful

to introduce the integer linear formulation of the QSAP:

Z = min å
i,jÎN

ÊÊÊ å
r,sÎM

ÊÊÊ fijdrsxirxjs + å
jÎN,rÎM

Ê eirxir

s.t. (4.1)
xÎX={ å

rÎM
Êxir=1, "IÎN, xirÎ(0,1}"IÎN, "rÎM}

Variable xir is equal to one if and only if process i has been assigned to processor r.

Consider a generic decomposition of the matrix f such that f=f1+f2. Problem (4.1) can be rewritten

as follows:

min {å
i,j

ÊÊÊå
r,s

ÊÊÊ f1ijdrsxirxjs + å
j,r

Ê eirxir + å
i,j

ÊÊÊå
r,s

ÊÊÊ f2ijdrsxirxjs:   xÎX} . (4.2)

Let us introduce a new set of variables yir, and the constraints xir=yir"IÎN, "rÎM. Then (4.2)

becomes:
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min å
i,j

ÊÊÊå
r,s

ÊÊÊ f1ijdrsxirxjs + å
j,r

Ê eirxir + å
i,j

ÊÊÊå
r,s

ÊÊÊ f2ijdrsyiryjs

x, yÎX, (4.3)

x=y.

The Lagrangean relaxation of constraints x=y, introducing a multiplier lir for each iÎN and rÎM,

defines the following Lagrangean function L(l) and the corresponding generalized dual problem

LD:

L(l) = min {å
i,j

ÊÊÊå
r,s

ÊÊÊ f1ijdrsxirxjs + å
i,r

Ê (eir + lir)xir :xÎX}    +

min{ å
i,j

ÊÊÊå
r,s

ÊÊÊ f2ijdrsyiryjs - å
i,r

Ê liryir:yÎX}

LD = maxl L(l).

This approach can be generalized to any partition f=f0+f1+É+fk. In this case we must introduce

k+1 sets of variables {x0,x1,É,xk}, and k set of constraints xi-1=xi, i=1,É,k; let {l1,É,lk} be the

Lagrangean multipliers associated to these sets of constraints. The Lagrangean dual then becomes:

LD = maxl1,É,lk L(l1,É,lk). (4.5)

This kind of decomposition allows to obtain efficiently solvable subproblems when the matrices f0,

f1, É, fk correspond to reducible subgraphs, in particular, when they define a partition of the

communication graph into reducible subgraphs G0, G1, É, Gk. Now let PB be the value of the

partition bound which uses the above decomposition; the following properties are straightforwad:

PB = L(l1,É,lk)ÊÊli=0,Ê i=1,É,k;

LD ³ÊPB

Note that the linear costs appear only in the first subproblem associated to variables x0. We might

think to distribute these costs among the subproblems in a different way, as we suggested in the

previous section. In the case of Lagrangean Decomposition this is equivalent to consider

initializations of multipliers which are not all equal to zero.
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The number of multipliers of L(l1,É,lk) can be extremely large (O(knp)). This could turn the

solution of (4.5) into an intractable problem. In order to reduce the number of multipliers we can

introduce a different kind of relaxation.

Consider the following constraints:

å
r=1

p
Êrxir - å

r=1

p
Êryir = 0,ÊÊÊÊÊÊÊÊi=1,É,n (4.6)

The following relation holds trivially for each x and y ÎX:

x = y  Û å
r=1

p
Êrxir - å

r=1

p
Êryir = 0,i=1,É,n.

This suggest to study the following decomposition which is still equivalent to the original QSAP:

min å
i,j

ÊÊÊå
r,s

ÊÊÊ f1ijdrsxirxjs + å
j,r

Ê eirxir + å
i,j

ÊÊÊå
r,s

ÊÊÊ f2ijdrsyiryjs

x, yÎX, (4.7)

å
r=1

p
Êrxir - å

r=1

p
Êryir = 0,ÊÊÊÊÊÊÊÊi=1,É,n

The Lagrangean function obtained relaxing constraints (4.6), and the coresponding generalized dual

are:

L'(m) = min {å
i,j

ÊÊÊå
r,s

ÊÊÊ f1ijdrsxirxjs + å
i

Ê miå
r

Ê(eir + r)xir :xÎX}    +

min{ å
i,j

ÊÊÊå
r,s

ÊÊÊ f2ijdrsyiryjs - å
i

Ê mi å
r

Ê rxir:yÎX}

LD' = maxl L'(m). (4.8)

LD' is a lower bound for the QSAP, since (4.7) is equivalent to (4.1). Also in this case the result

can be extended to a decomposition in more than two components. This kind of decomposition

introduces a number of multipliers bounded by O(kn).

Theorem 4.1

LD ³ LD'

Proof:



13

Suppose that m* is an optimal solution of (4.8) and (x*, y*) is the corresponding solution of

L'(m*). Let us define l* as follows:

l*
ir = 

 îï
í
ïìrÊm*

i ifÊx*
irÊ=Ê1ÊorÊy*

irÊ=Ê1
0 otherwise.

Note that L'(m*) and L(l*) are equivalent hence (x*, y*) is an optimal solution also for L(l*) and

it  gives L'(m*) = L(l*). à

The above theorem shows that LD' cannot give a lower bound better than LD, however this

technique can be used to obtain a good initial solution of the stronger relaxation.

5. Numerical comparison of lower bounds

In the present section we will compare the lower bound presented in [10] with the lower bounds

described in section 3; in particular we will  focus on the effectiveness of the partition technique and

the use of reducible graphs.

In the following tables Tree and Red are the subgraph bounds which use a spanning tree and a

maximal reducible subgraph, respectively; Tree_P, and Red_P are the partition bounds which use a

decomposition into trees and reducible subgraphs, respectively; LI_Red is the bound obtained

using also the L-I reductions. Problems with n=50,  and m={200, 300, 625} (tables 1, 3, 5) and

n=100 and m={400, 1000, 2500} (tables 2, 4, 6) have been considered. Each table entry contains

the average value of the bound over a sample of 10 instances.

Tables 1, 2, 3 and 4 report the results for QSAP of type (1.1), where drs (r¹s) represent the

distances on a mesh of size 2´4 (p=8), 4´4 (p=16) and 4´8 (p=32), fij are integer and uniformly

distributed in [1..10]. In tables 1 and 2 the distance drr r=1,É,p, is uniformly distributed in [0..1];

the linear costs eir are equal to eird, where d=mp/4n and eir are integer and uniformly distributed in

[1..10]. This implies that, on average, the total linear cost is of the same order of the total quadratic

cost. In tables 3 and 4,drr r=1,É,p, are equal to the maximum distance; the linear costs eir are

uniformly distributed in [1..10]. The choice of having nonzero distances drr, r=1,É,p,  is suggested

by the fact that if drr=0, r=1,É,p, the partition bound is equal to the subgraph bound. In fact for the
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problems on graphs Gl, 1 £ l £ k  an optimal solution Zl = 0 can be obtained by assigning all

processes to the same processor.

m p Tree Red Tree_P Red_P LI_Red
200 8 617.8 705.3 937.6 999.9 990.8
200 16 609.7 703.5 929.5 998.1 1008.6
200 32 797.8 985.0 1384.7 1517.1 1539.8
350 8 951.8 1071.0 1529.3 1615.7 1639.4
350 16 967.8 1102.3 1545.3 1647.0 1668.4
350 32 1237.9 1464.9 2306.9 2475.4 2563.6
625 8 1629.6 1766.1 2639.9 2743.6 2797.5
625 16 1577.4 1733.0 2587.7 2710.5 2779.2
625 32 2001.8 2284.1 3877.8 4096.2 4269.2

table 1: n=50, drr Î [0..1]r=1,É,p, eir =eird, with d=mp/4n, eir Î {1,É,10}

m p Tree Red Tree_P Red_P LI_Red
400 8 1233.3 1360.4 1878.9 1962.2 1956.2
400 16 1227.8 1378.7 1873.4 1980.5 1972.6
400 32 1600.5 1859.1 2790.3 2973.0 3021.2

1000 8 2723.8 2924.5 4352.3 4495.4 4544.1
1000 16 2672.4 2911.7 4300.9 4482.6 4529.1
1000 32 3378.8 3753.5 6406.9 6682.6 6934.4
2500 8 6416.6 6698.1 10443.4 10653.8 10810.3
2500 16 6344.2 6668.0 10371.0 10623.7 10824.4
2500 32 8065.1 8600.8 15552.9 15958.2 16581.5

table 2: n=100,drr Î [0..1]r=1,É,p, eir =eird, with d=mp/4n, eir Î {1..10}

m p Tree Red Tree_P Red_P LI_Red
200 8 216.3 310.6 809.4 852.9 848.3
200 16 194.8 291 787.9 833.3 823.6
200 32 220.1 366 1186.6 1263.8 1242.4
350 8 208.5 326.1 1343.4 1443.9 1439.2
350 16 186.7 309.4 1321.6 1427.2 1415.2
350 32 193 374.1 2027.5 2201.9 2179.5
625 8 205.8 349.5 2294.8 2505.9 2528.3
625 16 184.5 332.4 2273.5 2488.8 2504.6
625 32 180.6 392.2 3518.4 3894.8 3902.2

table 3: n=50, drr max distance, eir Î [1..10]
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m p Tree Red Tree_P Red_P LI_Red
400 8 435.8 573.8 1625.3 1692.5 1682.7
400 16 391.5 531.7 1581.0 1650.4 1624.7
400 32 444.4 646.7 2384.2 2495.6 2449.7

1000 8 411.6 613.9 3721.0 3951.6 3946.1
1000 16 370.3 578.7 3679.7 3916.4 3891.0
1000 32 368.9 669.7 5684.2 6097.5 6030.8
2500 8 411.2 703.7 8952.3 9808.0 9869.3
2500 16 370.0 673.1 8911.1 9777.4 9821.5
2500 32 358.5 777.3 13900.0 15356.2 15430.3

table 4:n=100, drr max distance eir Î [1..10]

The above tables show that Red dominates Tree, and the difference between the two bounds is

larger when linear costs are small (see tables 3 and 4).

Moreover the use of the partition technique is worthy, in particular when quadratic costs dominate

the linear ones (see tables 3 and 4). Note that the partition is effective also when spanning tree are

used; in fact the relative difference between Red_P and Tree_P is usually smaller than that of Red

and Tree.

Tables 5 and 6 report the results for problems of type (1.2), where both the quadratic and the linear

costs are uniformly distributed in [0..10].

m p Tree Red Tree_P Red_P LI_Red
200 8 99.6 126.3 103.7 141.0 128.8
200 16 53.9 77.2 53.9 77.7 55.0
200 32 40.9 77.1 40.9 77.6 48.9
350 8 97.4 139.3 104.0 182.1 177.1
350 16 52.6 86.7 52.6 91.2 73.8
350 32 41.5 89.6 41.5 96.9 78.6
625 8 95.4 148.9 110.5 264.4 291.5
625 16 51.7 97.5 51.7 118.7 124.2
625 32 40.8 107.2 40.8 144.0 166.6

table 5: n=50, qijrs Î [0..10]
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m p Tree Red Tree_P Red_P LI_Red
400 8 188.9 229.8 196.7 252.2 224.8
400 16 105.1 138.8 105.1 138.9 91.9
400 32 86.1 133.4 86.1 133.4 77.0

1000 8 190.9 263.7 218.2 394.2 363.1
1000 16 108.0 170.4 108.0 183.9 128.9
1000 32 85.7 172.1 85.7 191.6 131.3
2500 8 192.9 304.7 271.3 849.9 939.0
2500 16 106.1 199.2 106.1 326.4 352.5
2500 32 84.9 218.6 84.9 416.2 511.9

table 6: n=100, qijrs Î [0..10]

For these problems, the partition technique is sometimes less effective than in the previous cases, in

particular when p is large. Nevertheless Red_P gives good improvements when m is large. On the

contrary the improvement of Tree_P  on Tree is often negligible. This can be explained by the fact

that, if qijrsÊ=Ê0 occurs with high probability, the tail operation is likely to leave node labels

unchanged.

Note that LI_Red is almost always equivalent to the Red_P, except for problems with a large

number of arcs, where LI_Red tends to give better bounds.

In order to have better insights on how the bounds behave when the size of the problem changes, we

made other computational experiments where we let n range between 20 and 50. For each group of

problems we considered two values of p (i.e. p=2*3 and p=4*3) and three different classes of

graphs: the sparse class where m=n, the medium class where m=n2/10, and the dense class where

m=n2/4. The costs have been generated as for problems of tables 3 and 4. We set up a rudimental

simulated annealing to produce feasible solutions; further on SA will denote the value of the

feasible solution generated by the simuated annealing. We compared the differences SA-Tree and

SA-Red_P. In tables 7 and 8 we reported the percent of gap SA-Tree  closed by Red_P, that is

(Red_P-Tree)/(SA-Tree)%. Each entry of the tables is the average over ten instances.
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sparse medium dense
20 45.9% 72.1% 78.1%
30 34.5% 70.5% 76.5%
40 31.7% 70.6% 75.6%
50 30.2% 71.3% 75.8%

table 7: gap closed by Red_P, p=2*3.

sparse medium dense
20 30.3% 58.0% 66.0%
30 23.9% 58.4% 63.8%
40 21.7% 58.9% 63.7%
50 21.4% 59.5% 63.6%

table 8: gap closed by Red_P, p=4*3.

It should be noted that the relative behaviour  of the bounds does not seem to be affected when n

increases. On the contrary when p increases the gap between SA and Tree closed by Red_P

decreases slightly. On the other hand when the number of arcs in the graph increases, Red_P

becomes more effective with respect to Tree. In particular, for dense graphs Red_P closes between

63% and 78% of the gap. Finally we have to point out that the used heuristic is not very effective. In

fact for problems with m=n, the bound provided by Red_P is very often equal the value of the

optimal solution (i.e. the graph is reducible), while the value given by SA remains very large. This

means that the effectiveness of Red_P with respect to Tree is underestimated, for example when

n=m the estimate of the closed gap is about 30% instead of being close to 100%.
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