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Abstract: In this paper we address a particular periodic scheduling problem arising when designing timetables

in the railway freight transportation setting. Given a railway network, a set of commodities to be transported in

the network, and a set of train services with their frequencies, the problem consists in determining the departure

times for each train and the route for each commodity to minimize the total delay time incurred by the

commodities at the stations. Two alternative models are proposed, which are used to obtain both lower bounds

and heuristic solutions.
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1. Introduction

In the medium range planning of the activities in a Railway Freight Transportation System,
one of the most relevant problems is to define the service level, that is the train itineraries,
called services, and their frequencies (number of trips in the time horizon). This is also called
tactical planning. Once the service level has been established, at operational level (short range
planning) the problem is to determine the departure times of the trains from each station of
their itinerary, and to decide the routing of the shipped goods so that the global waiting time
at the stations is minimized. This paper will focus on this second problem, which can be seen
as a combination of a routing and a periodic scheduling problem. In particular we will be
interested in minimizing the total delay cost due to cars waiting for connections in
intermediate stations. In Section 2, we rapidly review the tactical planning problem in order
to establish the notation we will use; we also briefly review some of the literature on this
field; then, in Section 3, we present the operational planning problem, for which two models
are proposed. For the first model, a relaxation which allows us to obtain lower bounds is
described in Section 4. In Section 5 heuristic algorithms based on the two models are
presented. A preliminary computational comparison on real data is discussed in Section 6.
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2. Tactical planning

Here we briefly review the medium range planning problem and introduce the basic notation
used throughout the paper. A Railway Freight Transportation System is defined by a physical
network, GÊ=Ê(N,ÊA), where the nodes correspond to stations and the arcs to railway tracks,
and by a set of Origin/Destination (O/D) pairs; for each O/D pair the demand of
transportation is known. In particular the demand is specified by the quantity of goods to be
shipped from the origin to the destination and by the type of goods. Indeed different type of
goods can induce different transportation costs (e.g. perishables, or goods with high priority).

In the following we consider a commodity as defined by an Origin/Destination pair and by
one type of good; so the number of commodities is bounded by the number of O/D pairs
times the number of distinct goods. The demand of transportation for each commodity is
given in carloads, i.e. in number of cars, to be transported within the planning horizon. Since,
most often, the train schedule is periodic with period one week, the week will be taken as the
planning horizon. Of course any other panning horizon may be used instead.

We shall assume that the empty car redistribution has already been included in the
demand, that is the empty car will be considered as a particular commodity to be transported.
The problem of determining the fleet size and the redistribution of empty cars is an
interesting and challenging problem, which has been already widely studied (Beaujon and
Turnquist, 1991; Hagani 1989).

The stations are of different kinds depending on the type of facilities available. The most
expensive operation which may occur at a station is the so called classification: in this
operation, using different parallel tracks, cars are sorted in such a way that, at the end of the
operation, each track contains cars of the same type, i.e. cars with a common (possibly
intermediate) destination. Each line of cars of the same type produced by the classification
operation will be called a block. The classification operation requires a large yard with many
tracks, so it can be performed only at some stations. Another operation (much less space and
time consuming) is the operation of attaching to or detaching from a train a block of cars.
Also these problems have been studied extensively in the literature (see for example Crainic,
Ferland and Rousseau, 1986; Marin and Salmeron, 1993). In our models we assume a fixed
amount of time for the classification operation, depending on the station.

A train service (simply, a service) is a trip performed by a single train, which may or may
not stop at intermediate stations between the Origin and the Destination.

The objective of the tactical planning is to determine, within the planning horizon, the
train services to be run and their frequencies (i.e. number of runs within the time horizon).
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A typical approach to the tactical planning described above is the one proposed by Crainic
and Rousseau (1984). In that paper the authors propose a heuristic based on the computation
of minimum cost multicommodity flows on a suitable and usually very large network.

A similar problem is addressed also in (Keaton, 1992), where the tactical planning of a
particular railway system is efficiently solved by means of a heuristic algorithm based on a
Lagrangean relaxation.

The tactical planning in rail freight networks has been extensively studied by Marin and
Salmeron (1996 a, b, c).

Note that, in the tactical planning phase, the railway managers are not interested in the
exact timetable of each train: indeed they are rather interested in the itineraries and in the
services' frequencies, that is the number of service instances that have to be activated during the
planning period.

3. The scheduling problem

Here, we consider the problem of determining the actual schedule for the services which have
been chosen by solving the tactical planning (see Section 2). Such services will be called active
services; they are defined as sequences of legs, a leg being the portion of service between two
consecutive stations. Remembering that the schedule should be periodic with period U
(usually one week), the problem is to assign a departure time within such period to each
instance of each active service; for each service we have as many instances as is its frequency
value. The main constraints to be considered in solving the scheduling problem are the
following:
- the demand of transportation for each commodity must be satisfied,
- at any point in time, the stations and track capacities cannot be exceeded,
- each service instance cannot carry more than a given number of cars,
- the interval between the departure times of consecutive instances of the same service is

bounded from below.
In the solution of the scheduling problem the objective is to minimize the global time spent by
cars in the stations. In fact, while we do not have control on the traveling times, which
depend on the available technology, a clever management of the operations performed at the
stations and a good timetabling can significantly curtail the commoditiesÕ travel time.

We propose two models to describe the problem: the first one, based on a discretization of
the time horizon, is a multicommodity flow model on a quite large network, while the
second, in which the station capacity constraints (quite loose in most practical cases) are
relaxed, is of a much smaller (and hence tractable) size, but has a quadratic objective function.
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It should be noted that, in our models, we are not explicitly considering the track capacity
constraints which may have a practical relevance. Indeed the solution yielded by the
proposed models might present some ÒconflictsÓ, that is more trains present at the same time
in the same track section. Solutions violating these constraints can be suitably adjusted by
applying a pacing phase  (Chen and Harker 1990; Kraay, Harker and Chen 1991). This phase is
particularly important when single track networks are considered or when the railway is
shared by freight transportation and  passenger transportation. In all the experiments carried
out in this paper, we have never had to adjust the solution to eliminate conflicts. This
problem is also considered in (Caprara et. al. 1998) and in (Brunetta, Colorni, Laniado 1999).

3.1 A network flow model

To make the problem more tractable, we assume the time to be discretized by partitioning the
period into T intervals of equal length with starting points 0, 1, É, T-1. The intervalsÕ length
will be taken as the time unit. As an example, if the period U corresponds to one week, and if
the the intervalsÕ length is of one hour, then time 0 corresponds to 0:00 a.m. of Monday and
time T corresponds to 12:00 p.m. of Sunday.

The input data for this model are: the set of all possible commodities W, the demand dw in
number of cars during the period, for each commodity wÎW,  the set of active services Sa,
and, for each service sÎSa, the frequency ys (i.e. the number of copies of service s to be
activated during the period). For each w Î  W, we will denote by no(w) the station at which
commodity w is originated and by nd(w) the destination station of the same commodity. A leg
l shall be denoted by the triple (nÕ, nÓ, dl), where nÕ and nÓ are the starting and ending stations
of the leg and dl is its duration which includes also the time needed to load the cars at the
beginning of the trip (including classification time) and the time needed to unload it at the
end of the trip.

We shall call service instance a pair (s,t), where s is an element of Sa and tÎ{0,1,É,T-1} is the
departure time from the origin of s. The set of all possible service instances is S = Sa´{0,1,É,T-
1}.

The model we are going to propose is based on the definition of the time expanded graph
G*Ê= (N*, A*), where:

N* = {(n, t): n  is a station and t Î {0, 1, É,T-1}}
È {no(w): w Î W} È {nd(w): w Î W},

and
A* = A1  È A2  È A3  È A4;

with
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A1  = {((n', t'), (n", t")): $s ÎSa  and  $ lÎs s.t. l=(n', n", (t"-t')modT)},
A2  = {((n, t), (n, (t+1)modT)), t= 0, 1, É, T-1},
A3  = {(no(w), (no(w), t)): w Î W, tÎ {0, 1, É,T-1}},
A4  = {((nd(w), t), nd(w)): w Î W, tÎ {0, 1, É,T-1}}.

The arcs in A1  correspond to legs, i.e. to possible physical movements of commodities
between two stations, those in A2 correspond to waiting times, while those in A3 and A4 are
related to loading and unloading operations, respectively.

Note that a service instance (s,t) defines in G* in a unique way a path going from the node
(n,t) corresponding to the initial station at time t, to the node (n',t') corresponding to the
terminal station, and (t' - t) mod T is the service duration. We will call r(s,t) such path.

Before writing the constraints of the model of the scheduling problem, we need some
further notation:

hrw: variable expressing the flow (number of cars) of commodity w on route r;
dw demand for commodity w;
zst: 0/1 variable (=1 iff service instance (s,t) is chosen);
Ew: set of routes that can be used by commodity w; a route feasible for commodity

wÊis a path in graph G* starting in no(w) and ending in nd(w)

a
Ê_

  n: capacity (number of cars) of station n for a single time interval [t, t+1];
Rnt: set of routes using station n at time t;
Rl: set of routes using leg l;
Re: set of routes using arc eÎA*;
ys: frequency of service s (number of trains per period);
Bs: maximum number of cars per train in service s;
Sk(t): set of all the service instances which pass through track k at time t;
Ts: minimum time distance between two consecutive departure of service s.

The model is:

å
rÎEw

Ê  hrw  = dw, "wÎW, [demand of transportation] (3.1)

å
wÎW

Ê   å
rÎEwÇRnt

Ê  hrw  £ a
Ê_

  n, "(n,t) [station capacity] (3.2)

å
wÎW

Ê  å
rÎEwÇRe

Ê  hrw - Bszst £ 0 "e Îr(s,t), "(s, t)ÎS [service capacity] (3.3)

å
t=0

T-1
Ê  zst = ys, "sÎSa [frequency] (3.4)

å
i=1,É,TsÊt=(t+i)modT

Ê  zst £ 1, "(s,t)ÎS [departure times] (3.5)

zst Î {0,1}, "(s,t)ÎS
hrw ³ 0, "wÎW, "rÎEw.
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Constraints (3.5) assure a proper spacing between successive departures of instances of the
same service. Note that the modulo operation is necessary to take into account the fact that the
scheduling is periodic.

The objective function to be minimized is the total cars' delay cost. Since the flow on the
legs' arcs corresponds to movements on tracks and to operations at the stations, which must
be performed and whose duration is independent from the schedule chosen, the only flow
which gives a contribution to our objective function is the flow on arcs in A2; let us denote by
cw the cost per car and per unit of delay of commodity w. The objective function is:

Min å
wÎW

Ê  å
(i,j)ÎA2

Ê   å
rÎEw:(i,j)Îr

Ê  cw hrw (3.6)

The resulting problem is a minimum cost multicommodity flow problem with side
constraints which include some network design features. We have chosen a path formulation of
the multicommodity portion of the model; obviously, an arc formulation could have been used
as well.

3.2 A quadratic  model

A critical point of the model described in the previous section is the size which, for real
applications, can be quite large. Here we investigate an alternative model which leads to the
solution of problems of relatively small size. The model that we are going to propose in this
section is equivalent to the one presented above, except for the fact that  we relax the station
capacitiy constraints. In fact, on one side, the introduction of these capacities would make the
problem much more difficult to deal with, and on the other side, once a solution has been
obtained it is quite simple to adjust it, by properly shifting the departure times of the
conflicting service instances, to make it feasible, if needed.

Let us call active services' graph a directed graph GA  = (NA, NA) where the nodes in NA

correspond either to Origins/Destinations or to stations of the physical network which are
used by some active services, and there is an arc between two nodes n' and n" if there exists
an active service containing a leg (n',n", d), for some d, or n'  is an origin and n" is the
corresponding loading station, or n" is a destination and n' is the corresponding unloading
station.

For each sÎSa, let us denote by Is ={s1, s2, É, sys} the set of its instances, and by I the set of
the instances of all the active services. Note that, with this notation, an instance has not a time
attached as in the previous model but it has a position: instance si is the ith instance of service s
in the planning period, and we want to assign to each instance si, i=1,É,ys, a starting time pi

such that p1 < p2 <É< pys. As before the objective is to minimize the global delay cost, i.e. the
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time spent in transferring commodities from one train to another, multiplied by the number
of carloads and the cost coefficient cw. Note that variables pi are continuous, hence, unlike the
previous case, train departure times can assume real values in the interval [0,ÊÉ,ÊT). Given a
route r and two service instances i and j which are used consecutively by route r, k(i,j,r)ÎNA

defines the common station where commodities are unloaded from i and loaded in j. Without
loss of generality, we can assume that for each pair of service instances i and j which are used
consecutively on route r, the exchange station k(i,j,r) is unique. In addition, let C(r) denote the
set of pairs of service instances used consecutively in route r, and let  eik be the trip duration
(including loading and unloading times) from the first station of instance service i to station k.
The model is defined as follows:

Min å
wÎW

Ê   å
rÎEw

Ê   å
i,jÊÎC(r)

Ê (pj - pi + Txijk(i,j,r) - eik(i,j,r) + ejk(i,j,r))   cw hrw (3.7)

å
rÎEw

Ê   hrw  = dw , "wÎW, (3.8)

å
wÎW

Ê   å
rÎEwÇRl

Ê   hrw  £ Bi, "lÎi, "iÎI, (3.9)

hrw >0 Þ pj - pi + Txijk(i,j,r) ³ (eik(i,j,r) - ejk(i,j,r)) ,   "rÎEw ,"i,j ÎC(r), (3.10)
pj - pj-1 ³ Ts,  j=2,É,ys , "sÎ Sa, (3.11)
p1  - pys + T ³  Ts, "sÎ Sa, (3.12)

xijk(i,j,r) Î {0,1}, "wÎW, "rÎEw, "i,jÎC(r),
hrw ³ 0, "wÎW, "rÎEw.

In the objective function (pj  + ejk(i,j,r)) - (pi  + eik(i,j,r)) gives the difference between the arrival
time of instance i and instance j at station k(i,j,r). Variable xijk(i,j,r) will be set to one if i arrives
at the connection station k(i,j,r) after j has already left; in this case the involved commodities
will wait until service j passes through the station again in the next period. The usual
constraints on the transportation demand are specified by (3.8) and service capacity
constraints are given by (3.9), while departure times spacing constraints are expressed by
(3.11) and (3.12). Logic constraints (3.10) state that if route r is used by some commodities
then service instances i , jÎC(r) must be in connection.  A suitable linearization of these
constraints may be obtained easily by introducing  a set of 0-1 variables.

4. A lower bound based on Lagrangean relaxation

In the flow model proposed in Section 3.1, the only constraints binding flow variables h to the
0-1 variables z are constraints (3.3). Applying Lagrangean relaxation to those constraints, we
obtain the following  relaxed problem, where l³0:
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j(l)=Min å
wÎW

Ê  å
(i,j)ÎA2

Ê   å
rÎEw:(i,j)Îr

Ê   cw hrw   + å
(s,t)ÎS

ÊÊ  å
eÎr(s,t)

Ê   le ( å
wÎW

Ê  å
rÎEwÇRe

Ê  hrw-Bszst) (4.1)

å
rÎEw

Ê  hrw  = dw, "wÎW, (4.2)

å
wÎW

Ê   å
rÎEwÇRnt

Ê  hrw  £ a
Ê_

n, "(n,t), (4.3)

å
t=0

T-1
Ê  zst = ys , "sÎSa, (4.4)

å
i=1,É,TsÊt=(t+i)modT

Ê  zst £ 1, "(s,t)ÎS, (4.5)

zst Î {0,1}, "(s,t)ÎS,
hrw ³ 0, "wÎW, "rÎEw.

The Lagrangean Dual is then Max {j(l): l³0}.
For any given l, j(l) can be computed by solving two independent subproblems. The first
subproblem involving variables h is a standard multicommodity flow which can be solved
rather efficiently (Ahuja, Magnanti & Orlin, 1993). The minimum cost multicommodity flow
problem is:

Min å
wÎW

Ê  å
(i,j)ÎA2

Ê   å
rÎEw:(i,j)Îr

Ê   cw hrw   + å
(s,t)ÎS

Ê  å
eÎr(s,t)

Ê   le å
wÎW

Ê  å
rÎEwÇRe

Ê  hrw

å
rÎEw

Ê  hrw  = dw, "wÎW,

å
wÎW

Ê   å
rÎEwÇRnt

Ê  hrw  £ a
Ê_

n, "(n,t),

hrw ³ 0, "wÎW, "rÎEw.

The second subproblem is:

Min å
(s,t)ÎS

Ê   å
eÎr(s,t)

Ê
Ê   - le  Bszst

å
t=0

T-1
Ê  zst = ys , "sÎSa, (4.6)

å
i=1,É,TsÊt=(t+i)modT

Ê  zst £ 1, "(s,t)ÎS, (4.7)

zst Î {0,1}, "(s,t)ÎS.

This last problem deserves some attention due its particular structure. In fact, it decomposes
into a set of separable subproblems, one for each service sÎS:
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Min å
t=0

T-1
Ê  å

eÎr(s,t)
Ê   - la Bszst

å
t=0

T-1
Ê  zst = ys, (4.8)

å
t=1,É,TsÊt=(t+i)modT

Ê  zst £ 1, i = 0,É,T-1 (4.9)

zst Î {0,1}, "(s,t)ÎS.

In practice we have to determine the departure time of ys trains properly spaced and such
that the sum of the costs associated to each departure time is minimized. The optimal solution
can be found in pseudo-polynomial time by solving Ts  constrained shortest path algorithms
on the graphs GsjÊ=Ê(Nsj,ÊAsj), j=0, É,Ts-1, defined as follows:

Nsj = {o, d} È {j, j+1, É, T-1},
Asj = {(o,t): t=j,É,T-1}  È {(t,d): t£T-Ts+j}  È {(t,t'): t'-t ³Ts}.

The weight associated with each node t ÎNsj  is

wt = 
 îï
ïí
ï
ïì0 ifÊt=o,Êd

å
eÎr(s,t)

ÊÊ-ÊleÊBs otherwise.

On graph Gsj, each path from o to d of exactly ys+1 arcs, corresponds to a properly spaced
departure times assignment to ys trains such that no train will leave before time j. The path of
exactly ys+1 arcs which minimizes the sum of the node weights defines the optimal departure
time assignment of trains leaving not before time j. This path can be found in polynomial time
by means of the following procedure (Pratesi, 1995):
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procedure Fixed_length_path (Gsj);
begin

{ data structure initialization}
pred(d):=¯;  label(d):=¥;
for i=j,É,T-1 do
begin

pred(i,1):=o;   label(i,1):=wi;
for k=2,É,ys do
begin

pred(i,k):=¯;  label(i,k):=¥;
end

end
{fixed length path computation}
for i=j,É,T-1 do
begin

for k=1,É,ys-1 do
begin

if pred(i,k)¹¯ then
for h=i+Ts ,É,T-1 do

if label(i,k)+wh < label(h,k+1) then
begin

pred(h,k+1):=i;   label(h,k+1):=label(i,k)+wh;
end

end
if pred(i,ys)¹¯ and (i£T-Ts+j) and label(i,ys)<label(d) then
begin

pred(d):=i;   label(d):=label(i,ys);
end

end
end.

Paths are described by a predecessor function pred(i,k) that gives the predecessor of node i
in the path from o, which uses exactly k arcs. The total weight of the path is given by label(i,k).
At the end of the procedure, pred(d) contains the minimum weight path whose total weight is
given by label(d).

Note that graphs GsjÊare acyclic, thus the computational complexity of procedure
Fixed_length_path (Gsj) is O(|Asj|ys). To solve the whole problem it suffices to call the procedure
Fixed_length_path (Gsj) for j=0, É,Ts-1; the minimum weight path defines the minimum cost
departure time assignment for service s. Hence the overall complexity is O(Ts|Asj|ys).

The optimal solution of the Lagrangean Dual can be computed by efficient algorithms, see
for example (Carraresi, Frangioni and Nonato 1996). This optimal solution gives a lower
bound for the total delay of the transportation system.

5. Heuristic solutions to the scheduling problem

5.1 A heuristic for the flow model

Here we propose a heuristic approach to find a feasible solution for the scheduling problem
starting from the optimal solution of the Lagrangean relaxation. Such a solution can be
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constructed heuristically by means of network flow algorithms along the lines proposed in
(Bertossi, Carraresi and Gallo, 1987) for vehicle scheduling problems.

Let l* be the optimal Lagrangean multipliers vector, and (h*, z*) be the solution found
evaluating j(l*). If (h*, z*) satisfies the service capacity constraints (3.3), then we have found
the optimal solution. On the contrary, if some constraints are violated we have:

å
wÎW

Ê  å
rÎEwÇRe

Ê  h*rw - Bsz*st> 0 (5.1)

for some eÎr(s,t), and (s,t)ÎS; we can try to modify flow variables h* in order to obtain a
feasible flow with respect to the given z*. This can be done by repeating the following steps,
until a feasible solution is obtained:

1) select an arc e=(i,j)ÎA1 such that (5.1) holds;
2) while the constraint is violated repeat:

2.1) select one route r among all the routes with h*rw>0 that use e,
2.2) decrease of D  = min{h*rw , Bsz*st - å

wÎW
Ê   å

rÎEwÇRe
Ê   h *rw }, the flow  on the

path from i to the destination of commodity w,
2.3) redistribute the D units of flow on the shortest paths from node i to the

destination having positive residual capacities, with respect to the current
flow.

Given a solution h, let fe denote the amount of flow on arc e. The paths of step 2.3, contain
only arcs with positive residual capacity; that is one arc e=(i,j) can be used from i to j if the
flow on the arc, fe, does not exceed the capacity, or from j to i if the flow is strictly positive.

In other words, the residual capacities of the arcs with respect to h are given by fe, if used
in inverse direction, and by:

re = 
 îï
í
ïì a

Ê_
nÊ-Êfe ifÊeÎA2,

Bstz*stÊ-Êfe ifÊe=(i,j)Îr(s,t),
¥ forÊallÊtheÊotherÊarcsÊeÎA*,

in the other cases.
The costs that are used for the shortest path computations, are given by the reduced costs

with respect to the optimal Lagrangean multipliers l*. The optimality of multipliers assures
that all the costs be non negative.

Obviously, the final solution provided by the heuristic is strongly affected by the order in
which violated constrains are considered, or by which commodity is selected to be re-routed
to the destination. In our implementation we did not apply any particular strategy.

5.2 A heuristic for the quadratic model

A heuristic approach for the quadratic model can be derived from the following observations:
(i) when departure times are fixed the problem becomes a standard multicommodity flow
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with linear objective function, while (ii) when the flow variables are fixed, the problem is a
relatively small size mixed integer linear problem.
The first subproblem is:

Min å
wÎW

Ê   å
rÎEw

Ê   Prw(p,x)hrw

å
rÎEw

Ê   hrw  = dw , "wÎW,

å
wÎW

Ê   å
rÎEwÇRl

Ê   hrw  £ Bi, "lÎi, "iÎI,

hrw ³ 0, "wÎW, "rÎEw.

Prw(p,x) denotes the cost of a given route which, once the service instances departure times p
and consequently variables x are fixed, can be obtained as follows :

Prw(p,x) = å
i,jÊÎC(r)

Ê (pj - pi + Txijk(i,j,r) - eik(i,j,r) + ejk(i,j,r))   cw

This problem can be solved efficiently by standard multicommodity flow codes (Ahuja,
Magnanti and Orlin, 1993).

On the other hand, when a feasible flow h is given the subproblem is:
Min å

wÎW
Ê   å

rÎEw
Ê   å

i,jÊÎC(r)
Ê (pj - pi + Txijk(i,j,r) - eik(i,j,r) + ejk(i,j,r))   cw hrw

pj - pi + Txijk(i,j,r) ³ (eik(i,j,r) - ejk(i,j,r)),   "rÎEw, "i,j ÎC(r), hrw >0
pj - pi ³ Ts, "i, j  Î Is,
0 £ pi < T, "iÎI,
xijk(i,j,r) Î {0,1}, "wÎW, "rÎEw, "i, j ÎC(r).

The hard part of this problem resides in the presence 0-1 variables x, however it has an
interesting structure which can be exploited in devising solution methods. In fact, if we fix
variables x, the problem is a network potential problem, which can be efficiently solved by
network flow algorithms. For more details see (Malucelli, 1996) where a class of problems of
this type is studied. As the usual size of the model in real life applications is rather small, the
mixed integer subproblem can be approached by standard branch and bound algorithm
using the linear relaxation. Other solution approaches to problems of this type can be found
in (Carraresi and Malucelli, 1993).

This decomposability property suggests an iterative procedure which converges towards
low cost solutions: starting from a set of feasible departure times, the flow problem is solved
yielding a flow which is used in the objective function of the mixed linear integer problem.
This last problem is solved obtaining new departure times, and the procedure is iterated. It is
easy to verify that at each iteration the value of the solution does not increase, as the solution
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obtained at the previous iteration is still feasible. The procedure halts when no improvements
in the objective function are obtaind.

6. Computational results

We present here some results from a very preliminary experimentation on eight problems
based on three different railway networks derived from the Spanish (Problems 1.1, 1.2, 1.3, 2.1
and 2.2) and the Italian (Problems 3.1, 3.2 and 3.3) railway freight transportation systems.
From these results we can draw some suggestions for further work. In particular a deeper
investigation needs to be made for devising a relaxation scheme yielding  better lower
bounds; in fact the lower bounds obtained so far  are very loose, and most likely this is one of
the causes of the low quality of the feasible solutions yielded by the network models.
Apparently the quadratic model  seems to be much more promising, although, due to the lack
of good bounds, we cannot make any strong  statement about its performance.

In Problems 1.1, 1.2. and 1.3 there are six stations with capacities varying from 150 to 300
cars, five tracks between stations with a capacity of 4 trains per unit of time, and three
commodities with demand 150, 160 and 140 cars. The delay costs are equal to 10 for all the
commodities. The problems have a different number of active services. In Problem 1.1 there
are only two services with frequencies 9 and 3 per week, respectively; Problem 1.2 has four
services with frequencies of 3 and 4, and Problem 1.3 has 5 services with frequencies varying
from 1 to 3. All the service instances have capacity of 50 cars. Table 6.1 reports the lower
bound obtained solving the Lagrangean relaxation (lb), the value of the solution yielded by
the flow model (fs) and by the quadratic model (qs).

lb fs qs
Problem 1.1 0 2800 0
Problem 1.2 0 0 0
Problem 1.3 0 2800 0

Table 6.1
Problems 2.1 and 2.2 are slightly larger: nine stations (capacities from 250 to 400), ten arcs

(capacity 6 trains), ten commodities (demand varying from 113 to 334, costs varying from 10
to 60). Problem 2.1 has 15 services with frequencies between 1 and 7, and Problem 2.2 has 19
services  with frequencies between 1 and 6. All the services instances have capacity of 50 cars.
Table 6.2 reports the results for these two problems.
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lb fs qs
Problem 2.1 38618 69445 57695
Problem 2.2 72596 103875 132675

Table 6.2
In the third group of examples, we considered a portion of the Italian railway freight

transportation system: twelve stations (capacities ranging between 750 and 1250 cars), 16
tracks (capacity 12 trains per hour), and 20 services with frequencies between 1 and 7, and
capacity between 20 and 30 cars. In all the problems we considered 10 commodities. Problems
3.1, 3.2 and 3.3 differ for the demand: in Problem 3.1 the demand ranges between 20 and 222
cars per commodity, in Problem 3.2 we increased the demand of 10% with respect to Problem
3.1, thus it ranges between 22 and 244, and in Problem 3.3 we increased the demand of 20%
with respect to Problem 3.1, thus it ranges between 24 and 266. The costs vary between 10 and
30. The results are reported in Table 6.3.

lb fs qs
Problem 3.1 0 12980 1550
Problem 3.2 0 22610 2010
Problem 3.3 1250 32090 5300

Table 6.3
Recall that all the models do not consider explicitly the track capacity. All the solutions

produced by the heuristics have been tested, however none of them violates these constraints;
hence they did not require to be adjusted.

The heuristic based on the quadratic model give the best results, except for Problem 2.2
where the flow algorithm have a better performance. Note that the gap between lower bound
and the value of the heuristic solution is always quite large. It should be interesting to
investigate whether this gap depends on the poor quality of the lower bound or on the
quality of the heuristic solutions.

To get a better idea of the goodness of the solution found by our approaches, for Problems
3.1, 3.2 and 3.3, the ones derived from the italian railway network, we have compared the
objective function values obtained by the algorithms with the values derived from the
analysis of the current timetable. The values obtained for the current timetable are: 47200,
64880 and 92060, respectively. Thus the timetable obtained through our models appears to be
definitely better than the current one.

We have also compared the additional cost due to the waiting times in stations with the
net travel cost. The net travel cost is computed as the minimum theoretical travel time for each
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commodity (i.e. relaxing the stations, tracks and services capacities, and not considering the
connection time between services) multiplied by the number of cars and the cost coefficient
related to the commodity. Tables 6.4, 6.5 and 6.6 report the percent value due to the delay in
station cost with respect to the ideal travel time, for lb, fs and qs.

lb fs qs
Problem 1.1 0% 18.7% 0%
Problem 1.2 0% 0% 0%
Problem 1.3 0% 18.7% 0%

Table 6.4
lb fs qs

Problem 2.1 13.9% 25.0% 20.8%
Problem 2.2 26.2% 37.4% 47.8%

Table 6.5
lb fs qs

Problem 3.1 0% 9.6% 1.2%
Problem 3.2 0% 15.3% 1.4%
Problem 3.3 0.8% 19.8% 3.3%

Table 6.6
The net travel cost is 15000 for problems 1.1, 1.2 and 1.3, and 277530 for problems 2.1 and

2.2; while it is 134860, 148170 and 161970 for problems 3.1, 3.2 and 3.3 respectively.
It should be noted that the percentage of the delay cost computed by qs for problems of

larger size (3.1, 3.2 and 3.3) is very small, which provides further evidence of the goodness of
the solution  obtained from the quadratic model.

All the programs have been implemented in C++ and run on a workstation HP-9000-712.
For the solution of the mixed linear integer problems and the multicommodity flow we used
CPLEX 3.0. The optimization of the code was not the aim of this work, and, in fact, the
computational times are quite high. The solution of the network flow model (both lower
bound and heuristic) took from 30 minutes to 10/11 hours. However, more than 90% of this
time was spent in solving multicommodity flow problems. The use of a more efficient code
would drastically curtail the computational time. The heuristic for the quadratic model is
more efficient: it took less than one second for the small examples, and at most 45 minutes for
the largest one (Problem 3.3).
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7. Conclusions

We have considered the problem of determining the servicesÕ schedules together with the
goods' routes,  in a railway freight transportation system, in order to minimize the delay costs
due to poor synchronization.

This seems a problem only marginally dealt with in the literature, although quite relevant
in practice. Here we have presented two alternative models leading to two solution
algorithms.

Although preliminary and on a limited set of test problems, our experimentation suggests
that the second approach is quite promising; in fact, in our problems it has yielded good
solutions at rather low computational cost.
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