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Abstract

District heating plants are becoming more common in European cities, especially in the
northern countries. These systems make it possible to furnish users with warm water while
locating the production plants in the outskirts. This has the double benefit of lowering the
impact of pollution on the center of the city and achieving better conversion performances
compared to individual heating plants. Moreover, this kind of plant can exploit alternative
energy sources, such as the burning of urban waste or biomass, or geothermal sources. In
order to amortize the costs throughout the year, the system often includes a combined heat
and power (CHP) plant, in order to exploit the energy during the summer as well, when the
demand for warm water decreases. A linear programming model for the optimal resource
management of such a plant is presented and some results for a real case are reported. The
problem of planning the distribution network is also addressed. This problem has a non-
linear nature but can be linearized and solved by means of Mixed Integer Linear Programming
packages.

1 Introduction

In district heating plants, warm water is distributed to users of a urban area. The users are
private homes, hospitals, schools, offices, and so on, and each one has its own requirements in
terms of calories based on the atmospheric temperature, the hour of the day, and the day of
the week. Warm water is usually produced in conversion plants which are located outside the
center of the city both in order to take advantage of the easier logistics of the outskirts, and to
contribute to decongesting the often polluted air of the cities. These centralized plants are able to
convert resources into heat much better than individual plants. Moreover, as they are constantly
controlled, the quantity of polluting emissions is minimized. In most cases, conversion plants also
take advantage of alternative energy sources as, for example, the incineration of urban waste,
biomass, biogas, or the exploitation of geothermal sources, if available. This greatly contributes
to the sustainability of the system from an ecological point of view [14].

The district heating systems require huge investments, and these expenses are hard to amor-
tize, particularly in southern regions, where the energy demand for heating purposes is concen-
trated in a few winter months. To fully exploit the conversion plant throughout the year a power
generator is often included in the system. This way, when production is greater than the users’
demand, part of the heat is utilized to generate electricity to be sold on the market.
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In the case of a very simple system, that has as input only one energy source (such as oil or
gas) and only warm water for heating as output, management is quite simple and does not require
any optimization model to support daily management decisions. However, in the presence of
several inputs, possibly with different costs based on the time of the day or the month, and more
than one output, as when a combined heat and power plant (CHP) is available, a quantitative
support is needed. Note that this kind of optimization support can be helpful also when the
managers want to plan extensions of the system, as, for example, the addition of new users, the
increment of the conversion plant power or the application of new tariffs, and measuring the
economical impact of these choices is desidered.

In this paper we first introduce a linear programming model for optimizing the daily resource
management in a district-heating system with three different energy sources and a CHP. We take
as our example the district heating system of Ferrara, a medium size city in northern Italy. The
technical characteristics of the system are described in Section 2, and the proposed mathematical
model follows in Section 3. Some results on real data and a comparison with the performances of
the current management are presented in Section 4. Then in Section 5 we cope with a peculiar
problem which arises in the management of the district heating system of Ferrara but which
can be generalized to other cases. In the system, the warm water circulates in a network of
heat-insulated pipes. A heat-exchanger is installed at each user. The cold water coming out
from the exchangers returns to the plant in separate insulated pipes. One of the most relevant
technical problems is that the cold water can have quite a high temperature, especially in winter,
because the exchangers of the users are not technically advanced enough. This results in a loss
of efficiency of the system as more water must circulate (increasing the pumping costs) and
also because some of the energy sources are not fully exploited. The problem of assessing the
economical advantage of substituting the exchangers with more efficient ones is formulated as
a mathematical programming problem. The problem, which at first is non-linear, can actually
be reformulated in a linear way and solved by means of Mixed Integer Linear Programming
packages.

Optimizing the operations of a CHP has been considered in the recent literature. Gardner
and Rogers [11], for example, deal with the cost minimization of meeting a time varying demand
of heat and electricity. They propose a mathematical programming model which optimizes
both the operations and the capacity, althoug they do not consider the distribution aspects of
the system. The same class of problems, accounting also for market issues and uncertainty is
extensively studied by the team working on the European Project Oscogen. On the project’s
website [16], several papers report on technical aspects as well as numerical methods. Recently
Escudero [9] did a survey on the mathematical programming approaches used to tackle the
dynamic problems that arise in the management of power production and market.

The contribution of the present paper is mainly in the design of a district heating distri-
bution system. We first introduce a simple model for the optimization of the daily operation
management in the energy generation and distribution in a real district heating system. This
basic model is then extended to deal with the challenging problem of optimally designing the
distribution network. To the best of our knowledge, this problem has never been addressed in
the optimization literature.

2 Technical aspects of the district heating system under study

The district heating system under consideration is that of the city of Ferrara. Having three
different energy sources and one CHP, the system is complex enough to be taken as a general
example which may easily encompass other simpler systems.

The case of Ferrara is one of the most significant in Italy since it is one of the largest areas
covered by district heating using a geothermal source [8].
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Figure 1: Simplified scheme of the system

A simplified structure of the system is depicted in Figure 1. The warm water heated by the
energy sources is stored in two heat insulated tanks of 800 m3 each. The cold water returning
from the users is stored in another pair of insulated tanks with the same capacity. The water
is pumped into two different circuits, one for the warm water going from the heating plant to
the users, and the other for cold water returning from the users to the heating plant. The
distribution network consists of underground heat insulated pipes of various diameters. Since
the cost of the pipes and the cost of digging is quite relevant, and considering the very low
probability of a pipe breaking, the network is not redundant. It thus has the structure of a
double tree: one for the warm and one for the cold water. The current total length of the pipes
is 26 Km for each circuit. The temperature of the warm water is constant at 90◦C, while the
temperature of the cold water ranges from 50◦C to 70◦C. The loss of temperature in the circuits
and in the tanks is irrelevant for our managing purposes, although later on, we will extend our
initial mathematical model in a way that the losses of temperature can be accounted for.

Each user has a heat exchanger that allows him/her to exploit the heat transported by
the warm water. The exchanger, after having exploited the incoming warm water, sends the
water at a lower temperature back to the plant through the cold circuit. The way in which
the exchangers exploits the warm water induces the temperature variation in the cold circuit.
Typically, on a cold day the users increase their heat demand, and consequently the volume
of warm water pumped into the exchanger increases. The augmented circulation speed results
in a small difference between the input and the output temperatures. Thus, on cold days the
returning temperature is higher than on normal days.

The district heating system serves about 12, 000 users (corresponding to homes, offices,
schools, hospitals, and so on), heating about 3.5 million cubic meters. The demand is clearly
extremely variable over the course of the year and also the day; typically there are three peaks,
one in the early morning, one at noon, and one in the evening.

The system has three possible energy sources. The first is a low temperature geothermal
source in the vicinity of the city. In the plant there is a heat exchanger between the geothermal
heating fluid and the water used to transport the heat in the distribution network, so that,
after use, the geothermal fluid is reintroduced into the ground. In the current configuration
this exchanger can produce up to 400 m3 per hour of water at 90◦C. Note that the production
upper bound is expressed in terms of volume and does not depend on the temperature, that is,
it will always produce 400 m3/h whether the temperature of the cold water is 89◦C or 40◦C.
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The maximum production capacity of this source is estimated as 12 GCal per hour, but it is
extremely variable depending on the temperature of the cold water returning from the users.

The second source is provide by four methane burners. Their total production capacity is
36 GCal, even though one of the burners is often kept off for back-up reasons: it is turned on
only in case one of the other sources is out of order or turned off for maintenance reasons. As
the methane source is the most costly, it is used only in the presence of peaks of demand, which
occur only a few days per year.

The third source is the urban waste burner. Its maximum production capacity is about 8.5
GCal per hour obtained by burning 600 tons of waste. Since the company which manages the
district heating system is also in charge of the collection and disposal of urban waste, we can
assume that the cost of burning is zero, given that it must be carried out even without utilizing
the energy for other purposes.

The problem of stocking the waste is not considered in the operations management because
in any case the burner is always used at its full capacity and the waste exceeding the processing
capacity is sent to a second burner which is not utilized to produce energy.

Given that during the summer the demand for heat is very low and can be almost completely
covered by the geothermal source, and that waste cannot be stored, introducing a power gener-
ator could exploit all or part of the heat produced by the waste burners. The power generator
produces from a minimum of 1.3 to a maximum of 3.3 MW per hour. In the latter case all the
heat is utilized to generate electric power, while in the former case 7 GCal per hour are left for
heating purposes. The electrical power generated by the incinerator is bought by the national
power supply company at a political price. This price varies according to the month or the time
of day.

In 1997, when the power generator had not yet been installed, the geothermal source,
methane and waste burners furnished the 65%, 15% and 20%, respectively, of the total heating
needs. This represented saving about 10, 000 tons of oil, thereby reducing the emissions in the
atmosphere by about 23, 500 kg of CO2, 28, 000 kg of NOx and 42, 000 kg of SOx [10].

Before the introduction of the power generator it was rather easy to establish an efficient
operations and resource management policy based on the production costs. Indeed, the first
source utilized - the incinerator - was the cheapest, followed by the geothermal when demand
increased, and methane burners only in extreme cases. However, with the introduction of the
power generator and considering that the price of electric power depends on the time of day and
on the month of the year, the need for optimization tools becomes of utmost importance, since
the simple policy may not be optimal.

Thus the problem consists in optimally utilizing the energy sources and the storage capacity
(i.e. the water tanks) over the time, determining when and how much electric power has to be
produced, and finding an efficient way to employ the tanks to store heat. This problem can
be formulated as a simple Linear Programming (LP) model. The solutions obtained by any
commercial solver are of great importance not only to managing the day-to-day activities, but
also to evaluating the impact of some system variations, as for example the extension of the
distribution network to new users of different classes (schools, houses, factories, and so on),
an increased capacity of the tanks, the introduction of new sources, or possible changes in the
electric power market.

3 An LP model for the optimal daily operations and resource

management

Let us consider the matter of simple daily operations and resource management. The planning
horizon (typically one day) is divided into T intervals (typically of one hour), and for each interval
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t = 1, . . . , T it is given: the global demand of the users in caloriesDt, the minimum and maximum
electric power production capacity wt and Wt in kW/h, the maximum calories produced by the
methane and waste burners Qm

t and Qw
t , the maximum volume of hot water produced by the

geothermal source Qg
t in m3, and the temperature of the cold water τt. Moreover, it is also

given that the cost coefficients cm
t and cg

t for producing one MCal with the methane or with the
geothermal source. The cost of producing heat by means of the waste incinerator is considered
to be zero, since in our case the waste must be burned regardless of wheter or not the heat is
exploited, but obviously an explicit cost can be included in the model without any difficulty.
The selling price of electric power at time t is gt per kW/h.

Note that user demand can be expressed also in terms of m3 of hot water (D′
t). This quantity

obviously depends on the difference between the temperature of the hot water (i.e. 90◦C) and
τt, and for our purposes can be approximated as follows:

D′
t =

Dt

(90− τt)
t = 1, . . . , T. (1)

The correct relation should be expressed in terms of the mass instead of the volume; given
the range of temperatures considered by the proposed models, however, the differences are not
relevant.

Let us now introduce the decision variables of the optimization model. Variables qw
t , qm

t and
qg
t denote the number of MCal produced by the three energy sources during interval t (waste
and methane burners, and geothermal source, respectively). We also introduce the variables
xt denoting the volume of hot water produced in time interval t: these variables are actually
redundant but they simplify the notation and make the model and the results easier to interpret.
Let yt denote the quantity of electric power produced during interval t (in kW/h). Finally let zt

be the m3 of hot water stored into the tanks at the end of time interval t (z0 can be considered
as a constant indicating the quantity of hot water present in the tanks at the beginning of the
planning period). We do not explicitly consider variables for the quantity of water contained in
the cold water tanks since this can be obtained by subtraction with respect to the warm water
tanks.

A first set of constraints models the management of the demand and of the hot water stock:

xt + zt−1 − zt = D′
t t = 1, . . . , T. (2)

The demand in volume during time interval t must be satisfied by the flow produced in the same
interval and the difference between the quantity of water in the tank at the beginning and at
the end of the same time interval. The relation between the volume and the calories of the hot
water produced is given by the following equations

(90− τt)xt = qm
t + qw

t + qg
t t = 1, . . . , T. (3)

The relation between the heat used to produce electric power and the actual production is given
usually by a non-linear function. For our purposes, however, a linear approximation is sufficient
to plan the daily activity. Therefore, if yt kW/h are produced in time interval t, the calories
absorbed by the power generator of Ferrara are:

7

2
yt − 3050. (4)

thus, when production is maximum (i.e., yt = 3, 300 kW/h) all 8, 500 MCal are absorbed by the
power generator. Instead, when production is minimum (i.e., yt = 1, 300 kW/h) 7, 000 MCal
are left for the district heating. The production capacity constraints for the waste incinerator
and power generator can be written as follows:

qw
t −

7

2
yt + 3050 ≤ Qw

t t = 1, . . . , T, (5)
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1300 = wt ≤ yt ≤Wt = 3300 t = 1, . . . , T. (6)

As described above, the capacity constraint of the geothermal source is expressed in terms of
volume; therefore the constraints are:

0 ≤ qg
t ≤ Qg

t (90− τt) t = 1, . . . , T. (7)

In the case of the methane burner, the capacity constraints are simpler:

0 ≤ qm
t ≤ Qm

t t = 1, . . . , T. (8)

The objective function seeks to maximize the difference between the earning due to the produc-
tion of the electric power and the cost of exploiting the energy sources. We do not consider the
earning due to the sale of heat heat because, given the users’ demand, this value is constant and
it does not influence daily management decisions. Thus the whole model can be summarized as
follows:

P : max
∑

t∈T

(gtyt − cg
t q

g
t − cm

t qm
t ) (9)

s.t. (2), (3), (5), (6), (7), (8)

xt ≥ 0, 0 ≤ zt ≤ 1600 t = 1, . . . , T.

An additional constraint can be added (zT = z0) imposing that there be in the tank at the
end of the day the same quantity found at the beginning of the day.

This model is a Linear Programming (LP) problem of relatively small size even when the
planning horizon is large and the time discretization is narrow, and can be solved very efficiently
by any commercial LP solver.

3.1 A refined model considering burners start-up costs

Even though this first model provides good indications concerning the management policy of
the whole system, the solutions often can not be implemented. In fact, from preliminary com-
putational experience [2, 3] on winter days very often the operations suggested by the LP model
for the methane burners are either to turn them on at their maximum power or to switch them
off, sometimes for relatively short periods (see Figure 2, where the behavior of the methane
burners suggested by the model is compared with the actual policy of the company and with
the demand of the system). This kind of solution can be justified by the extremal nature of
the optimal solution of linear programs as provided by the simplex algorithm. This behavior
is considered unfeasible by the management because, for security reasons, each time a methane
burner is switched on, a particular ventilation and cleaning procedure must be carried out. This
procedure has the effect of eliminating possible unburnt gases from the combustion chamber
and, as a consequence, cools down the burner, yielding a loss of energy. Therefore, instead of
completely switching off a burner, sometimes leaving it on at a low production level may be
profitable, providing that it will be used again in a short time. Moreover, methane burners are
not ready to produce heat immediately after they have been switched on, especially if they have
been off for a long period. In this case some time and resources must be spent in order to let
the burner reach the required operation temperature.

In order to take into account these additional aspects and to avoid solutions that alternate
short periods in which methane burners are switched off, we modified the linear model as de-
scribed below. Let Lm

t denote the minimum production power of the methane burner when
turned on, cv be the cost of ventilating the combustion chamber, and cr(h) be the cost of start-
ing the burner after h time intervals during which it was turned off. We need to introduce some
{0, 1} variables: pt is equal to 1 if and only if the burner is on during time interval t, st is
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Figure 2: Comparison between the current company practice and that suggested by the model:
methane burners production in MCal on January 31

equal to one if and only if the burner is switched on at the beginning of time interval t. For the
sake of simplicity, in the model we assume that pt with t ≤ 0 are constants giving the status of
the burner during the previous planning period. These two sets of variables are related by the
constraints:

st ≥ pt − pt−1, t = 1, . . . , T. (10)

In addition, we need a set of variables that account for the cost of setting up the burners: if we
switch on the burner at the beginning of time interval t we incur a cost of rt defined as follows:

rt ≥ cr(h)



pt −

t−1
∑

j=t−h

pj



 , t = 1, . . . , T, h = 1, . . . , T. (11)

The model becomes:
P ′ : max

∑

t∈T

(gtyt − cg
t q

g
t − cm

t qm
t − rt − cvst) (12)

s.t. (2), (3), (5), (6), (7), (8), (10), (11)

Lm
t pt ≤ qm

t ≤ Qm
t pt−1 t = 1, . . . , T,

zt ≤ 1600 t = 1, . . . , T,

xt, zt, rt ≥ 0 t = 1, . . . , T,

pt, st ∈ {0, 1} t = 1, . . . , T.

For the sake of simplicity, we formulated the model as if there were only one burner was
present. Clearly, if the model must consider more than one burner, the sets of variables p, s and
r and the corresponding constraints have to be replicated for each burner.

With the introduction of the start-up aspects the model becomes a Mixed Integer Linear
Program and is clearly more difficult to solve with respect to model P . However, for the instances
of our case study and any other similar daily operations management problem, any commercial
Mixed Integer Linear Programming solver can achieve the optimal solution in a reasonable
amount of time.
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4 Computational results of the daily operations managements

In this section we present some results obtained with the proposed model regarding some real
data provided by the district heating company of Ferrara. These data are taken from the
management of 1997 when the power generator had not yes been installed. We selected these
days out of a set of 365 because they proved to be the most significant from the management
point of view. The profile of the other days is mostly the same as the selected ones or contains
some anomalies (lack of data, breakdowns, etc.). These data sets are available on the author’s
web page [15]. In order to make a fair comparison we first solved our model by imposing a null
production to the power generator. Then, to the same data, we applied the model considering
the electric power production as well to underline the economical improvements obtained from
the introduction of the power generator.

4.1 Comparison with the actual management without power generator

The available data refer to a period in which the power generator was not yet operational. Thus,
we applied the model imposing that the electric power production was null (i.e., variables yt

were set to zero in all time intervals). In this case the problem to be solved is very simple,
since the only output is the warm water, and we expected the optimal solution suggested by the
model to be not much better than the policy adopted by the company based on the historical
available data. As mentioned in Section 2, the company utilizes resources in increasing order
of cost; first the incinerator, then the geothermal source, and finally the methane burners. The
cost of producing one MCal with the methane burner (cm

t ) is 0.063 Euro for each time interval,
while one MCal produced by the geothermal source (cg

t ) is 0.0015 Euro. We considered seven
days. In Table 1 we report the comparison between the costs obtained with model P and those
corresponding to the actual management. Along with the overall objective function value we
have also indicated the contribution of the methane burners.

global cost methane cost
day company model % gap company model % gap

Jan. 31 14,171.36 13,917.00 -1.79 113.53 111.31 -1.96

Feb. 28 390.10 390.10 0 0 0 0

Mar. 25 361.33 291.44 -19.34 0 0 0

Apr. 23 376.10 254.65 -32.29 0 0 0

Apr. 30 269.56 49.48 -81.64 0 0 0

Sep. 29 47.23 0 -100.00 0 0 0

Oct. 29 4,901.61 4,773.34 -2.62 37.11 35.61 -4.03

Table 1: Comparison between model P and company policy (in Euro)

Since the behavior of the methane burner, as suggested by model P , is not always considered
practical, and is in fact switched off and often for short periods, we have also compared the
solution adopted by the company with the solution of the model that considers ventilating
and starting costs. Even when adopting very low costs (i.e. cv = 5 Euro, and cr(h) = 5h
Euro), the model provides solutions in which, if the methane burner is needed, it is utilized
in a single continuous period of time. We considered those days when methane burners were
utilized, and we also considered two different levels of minimum production (5% and 10% of the
maximum methane burners production). The results are reported in Table 2 where Lm denotes
the minimum production power in MCal of the methane burner when turned on.

The solution values provided by model P ′ are almost equivalent to those obtained with model
P . The costs for ventilating the combustion chamber and for regenerating the burner after a
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company model methane
day Lm global cost switches global cost switches company model

Jan 31 360 14,212.68 2 14,080.80 0 113.53 112.65

Jan 31 180 14,212.68 2 14,006.45 0 113.53 112.65

Oct 29 360 5,407.74 2 5,253.67 0 37.11 39.63

Oct 29 180 5,407.74 2 5,084.46 0 37.11 38.21

Table 2: Comparison between model P ′ and company policy

period in which it has been turned off lead to solutions in which the burners are never turned
off. In the company solution the burners are switched off twice, contributing significantly to the
overall cost. Therefore, even when considering set up times and costs, the optimization model,
in the simplest case without electric power generation, still provides competitive results with
respect to the actual policy. This fact proves that the model is realistic and besides providing
indications for the optimal daily planning, it can be utilized to evaluate possible extensions of
the system, such as an increased tank capacity, the introduction of new energy sources, the
addition of new users, and the activation of the power generator. These extensions have been
studied in [3] and the results are reported also in [15] where both the data sets used for the
experiments are available. Here we concentrate on the evaluation of the economic impact of the
power generator.

4.2 Impact of the power generator

We consider the electric tariffs of 1997 in Italy, which differ according to the month of the year
and the hour of the day. They are reported in Table 3 together with the prices negotiated with
the national power supply company which buys the whole production.

time interval October-March April-September

0-6 0.05 0.05

6-7 0.07 0.07

7-8 0.10 0.09

8-9 0.11 0.09

9-10 0.12 0.10

10-11 0.11 0.10

11-12 0.10 0.10

12-16 0.10 0.09

16-17 0.11 0.09

17-18 0.12 0.09

18-19 0.11 0.09

19-21 0.10 0.09

21-22 0.07 0.07

22-24 0.05 0.05

Table 3: Electric power tariffs in Euro per kW/h

In Table 4 we report the objective function value yielded by model P considering the opera-
tion of the power generator, that is with a production between 1, 300 and 3, 300 kWh. The table
also reports the total income from the sele of heat (0.068 Euro per MCal) and power with the
management costs subtracted, the number of MCal produced by the three sources and utilized
for the district heating.
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day income obj. function MCal geo MCal waste MCal methane kW/h

Jan. 31 31,042 -13,280 235,020 168,000 246,737 3,120

Feb. 28 33,281 2,197 304,200 163,393 65 32,516

Mar. 25 34,252 7,237 295,920 110,283 0 47,691

Apr. 23 28,446 3,738 297,160 7,564 0 57,593

Apr. 30 22,290 5,639 244,262 0 0 79,200

Sep. 29 13,498 5,845 111,409 0 0 79,200

Oct. 29 33,517 -4,600 284,600 168,000 107,476 31,200

Table 4: Results with electric power generation: total income, objective function value, heat
used for district heating and electric power

Note that, except for January 31 and October 29, the objective function is positive, that is
the income from the electric power is greater than the costs of generating energy by means of
methane burner and geothermal source. However, notice that the negative values of January
and October do not imply that on those days there was a financial loss as can be seen in the
income values.

We can also compare the results of Table 4 with those of Table 1. Indeed we could evaluate
whether it is really profitable to use the waste burner to produce electricity instead of using the
heat for the district heating, thus saving on methane, the most costly resource. This evaluation
is significant on January 31, February 28 and October 29, that is on the days in which the
methane is used. Note that, even though the difference is sometimes small, the introduction of
the power generator is always profitable, even in winter.

5 A district heating system design problem

In addition to the daily operations management analyzed in the previous sections, one planning
aspect which involves the design of the district heating system can be considered as a chal-
lenging problem. Here we do not consider the classical network design problem, that is the
problem of deciding which customers to serve, where to place the pipes and so on. In fact,
this problem is usually solved at the political level without involving any quantitative support
Indeed, many decisions can go beyond any economical rationale. Moreover, this kind of problem
is also very well studied in the literature of combinatorial optimization, in particular in relation
to telecommunication or distribution networks. The classical network design and constrained
spanning trees models and algorithms [5] can be easily adapted to the district heating system
case. Here we would rather discuss the problem of optimizing the return temperature, a key
issue in the design of district heating systems [7]. In particular, we want to select the type
of heat exchangers to be installed at the users in order to achieve good system efficiency at a
reasonable cost. As mentioned in the introduction and in Section 2, a high temperature of the
“cold” flow implies inefficiencies in the system, due to the increased amount of flow that must
circulate in the network and a reduced exploitation of some sources, such as the geothermal one.

In our design problem we consider the distribution network (i.e. the pipes) as given and a
set of users (or classes of users) I, and we assume that the demand in calories (Di

t) is known
for each interval of time t and for each user i ∈ I. The problem consists in deciding which
type of exchanger to install at each user, selecting it from a set of possible exchangers K. For
each exchanger type k and each user i the installation cost f k

i and a given returning water
temperature τk

i are known. Since the selection of different exchangers may induce different
volumes of water circulating in the network, in contrast with the managing problem previously
studied, we must explicitly consider also the cost cp

t of pumping one cubic meter of water at
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time t. The decision variables involved in the model are γk
i representing the selection of heat

exchanger k to be installed at user i, for each i ∈ I, and k ∈ K; xi
t, representing the volume of

water sent to user i and passing through its exchanger in time interval t, and the temperature
of the returning water which now must be accounted for by an explicit variable τt, instead of
being an input data as in the previous model. Moreover, we maintain the production variables
in terms of volume (xt), and in terms of calories (qm

t , qg
t , q

w
t ). For the sake of simplicity, in the

model we do not consider the electric power generation. However it is easy to include this aspect
as we have done in the daily management case.

Since variables γk
i represent the exchanger type selection, the following constraints must be

imposed for each user i:
∑

k∈K

γk
i = 1 ∀i ∈ I.

The temperature of the returning flow is computed as the average of the temperatures of all
users’ returning flows, that is:

τt =

∑

i∈I x
i
t

(
∑

k∈K τk
t γ

k
i

)

∑

i∈I x
i
t

t = 1, . . . , T.

To complete the model we must consider also the demand constraints, that is:

xi
t

(

90−
∑

k∈K

τk
t γ

k
i

)

= Di
t ∀i ∈ I, t = 1, . . . , T,

and the constraints regulating the flow in the tanks:

zt = zt−1 + xt −
∑

i∈I

xi
t t = 1, . . . , T.

It should be noted that the sum over all i ∈ I of variables xi
t plays the role of the demand in

terms of volume (D′
t) that we had in the previous model.

In summary the problem of optimally selecting the heat exchangers to be installed at each
user so that the resource management is optimized is formulated as follows:

DP : min
∑

i∈I

∑

k∈K

fk
i γ

k
i +

T
∑

t=1

(

cp
t

∑

i∈I

xi
t + cg

t q
g
t + cm

t qm
t

)

zt = zt−1 + xt −
∑

i∈I

xi
t t = 1, . . . , T (13)

(90− τt)xt = qm
t + qw

t + qg
t t = 1, . . . , T (14)

τt

(

∑

i∈I

xi
t

)

=
∑

i∈I

xi
t

(

∑

k∈K

τk
t γ

k
i

)

t = 1, . . . , T (15)

xi
t

(

90−
∑

k∈K

τk
t γ

k
i

)

= Di
t ∀i ∈ I, t = 1, . . . , T (16)

0 ≤ qm
t ≤ Qm

t t = 1, . . . , T (17)

0 ≤ qw
t ≤ Qw

t t = 1, . . . , T (18)

0 ≤ qg
t ≤ Qg

t (90− τt) t = 1, . . . , T (19)

0 ≤ zt ≤ 1600 t = 1, . . . , T (20)
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∑

k∈K

γk
i = 1 ∀i ∈ I, (21)

γk
i ∈ {0, 1} ∀i ∈ I, k ∈ K

xt, x
i
t ≥ 0 ∀i ∈ I, t = 1, . . . , T.

Note that constraints (14), corresponding to constraints (2) of the daily management for-
mulation, here are non-linear, since τt are now variables. Also, constraints (15) and (16) are
non linear since variables xi

t multiply selection variables γk
i or again variables τt. Moreover, the

presence of 0−1 variables γ makes the problem non-convex. Hence, at first sight the solution of
the problem as formulated above can be quite a difficult task, at least when utilizing standard
optimization software. What we will do in the following section is to try to get better insight
into the structure of the problem.

5.1 A network flow with temperature model

The Mixed Integer Problem DP , being non-linear and non-convex, appears quite intractable
in this form and cannot be tackled efficiently with commercial optimization software, as we
did in the case of the daily operations management. For this reason, in this section and in
the next one, we try to move toward models which allow the application of commercial Mixed
Integer Programming software. The first task is to highlight the flow nature of the problem by
reformulating the problem in an equivalent way. Conceptually, the basis of the problem is a
flow of water in a network (in our case represented by sets of variables x and z), and a flow of
energy in the same network (represented by variables q). Since the energy can be obtained as
the water flow multiplied by the temperature, we can rephrase the whole problem as a flow with

temperatures in a network. Refer to [1] for the basic notation on network flows.
In the network, characterized as usual by a set of nodes and a set of arcs, the nodes are

associated with requests for water and energy. In our case the nodes represent users (requesting
a given amount of energy), generators (offering energy) or other system elements such as the
tanks (neither requesting nor offering energy). The arcs represent the possibility of transporting
water and energy from one system element to another. Since in our case the system is a closed
circuit, we assume that in all nodes the request/offer of water is zero. Some capacities are
associated with the arcs of the network; these capacities can limit both the water flow or the
temperature of the flows, and consequently the energy flow.

ip

i1 h1

hr

j

xi1j

τi1j

xipj

τipj τ

xjh1

τ

xjhr

Figure 3: Energy conservation constraints

Hence, besides the usual flow conservation constraints typical of network flow problems which
state that in each node of the network the incoming flow must be equal to the outgoing flow,
we have a set of energy conservation constraints. This means that considering a node with some
incoming and outgoing arcs, the sum of the outgoing flows will be equal to the the sum of the
incoming ones, and the temperature of the outgoing flow will be equal to the average of the
incoming temperatures. The situation is explained in Figure 3, where the outgoing temperature
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is given by

τ =

∑

`=1,...,p τiljxi`j
∑

`=1...,r xjl`

.

In Figure 3 we represented a transit node both for the flow and for the energy that is a
node in which the incoming water flow is equal to the outgoing one, and the incoming energy
is equal to the outgoing one. In the presence of a node corresponding to a generator or a user,
the temperature of the outgoing flow (which is equal on all the arcs) must be defined so that
the difference between the outgoing and the incoming flows multiplied by their temperatures is
equal to the energy produced or absorbed by the node.

dummy node

User 1 GeneratorsGenerators

Cold Tank Cold Tank

User 2

Warm Tank

Warm Tank

Time Interval t Time Interval t+1

Figure 4: A network flow with temperature model

Using the notation introduced above we can describe the district heating system completely
in terms of a network carrying flows with temperatures. Since the planning must consider the
time elapsing, the nodes of the graph supporting the model represent the system elements (e.g.,
tanks, users, generators) in each time interval of the planning horizon. In Figure 4 we sketch
a portion of the network highlighting the transition between time intervals t and t + 1. We
represent the tanks by pairs of nodes connected by one arc in order to account for the volume
constraints of the tanks: this can be done by simply introducing a flow capacity on the arc equal
to the tank capacity. In the figure we represent two users and two types of exchangers per user:
each exchanger corresponds to one of the multiple arcs going from the user node to the cold
water tank. The selection variables (γk

i in model DP ) related to the exchanger of each user are
associated to each one of the multiple arcs exiting from a user node; in order to avoid that the
flow goes through an exchanger which is not installed, suitable arc design constraints will be
introduced. There are also arcs going from the tanks in one time interval to the tanks in the
next time interval; the flow in these arcs represents the amount of flow stocked in the tanks (i.e.,
variables z). We also introduced a dummy node (squared in the figure) for notational purposes;
this node acts as a “super generator” and is needed to uniformly state the energy conservation
constraints, as we will see later on.

Let G = (N,A) be the time multi-graph giving the structure of the network. The set of nodes
absorbing heat (i.e., the nodes representing users) is denoted by U ⊂ N : the amount of energy
absorbed by node j ∈ U is denoted by Dj and is given by the demand of the user in the interval
of time corresponding to the considered node. Let P ⊂ N be the set of nodes representing the
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generators. In principle, the nodes in P should supply energy, but the exact amount of energy
produced by each generator in each time interval is actually unknown, being a variable of the
model. Therefore we must introduce a dummy node s representing a super source offering the
total amount of energy required by the users (i.e. Ds = −

∑

j∈P Dj). We denote by A′ ⊂ A the
set of multiple arcs exiting the nodes in U : these arcs correspond to different exchanger types
and are denoted by the triplet (i, j, k), where i is the user node (corresponding to a user in a given
time interval), j is the node representing the cold water tank, and k is the type of exchanger.
We can consider two sets of variables associated with all arcs (i, j) ∈ A \A′ and (i, j, k) ∈ A′ in
the network: variables αij representing the flow of water for each arc (i, j) ∈ A\A′ (αijk for arcs
(i, j, k) ∈ A′), and variables σij (σijk) giving their temperatures. Note that actually, for the arcs
in A′, temperature variables σ assume a constant value determined by the type of exchanger.
Besides these flow and temperature variables we maintain the exchanger selection variables γk

i ,
which are now associated with all arcs (i, j, k) ∈ A′. The design problem DP can be rewritten
as follows:

DP ′ : min
∑

i∈I

∑

k∈K

fk
i γ

k
i +

∑

(i,j)∈A′

cp
ijαij +

∑

j∈P

cg
sj(αsj(σsj − σjs)) +

∑

i∈I

∑

k∈K

fk
i γ

k
i

∑

(j,i)∈BS(i)

αji −
∑

(i,j)∈FS(i)

αij = 0 ∀i ∈ N (22)

∑

(j,i)∈BS(i)

αjiσji −
∑

(i,j)∈FS(i)

αijσij = Di ∀i ∈ N (23)

αsj(σsj − σjs) ≤ Qj ∀j ∈ P (24)

αijk ≤Mγk
i ∀(i, j, k) ∈ A′ (25)

∑

k∈K

γk
i = 1 ∀i ∈ I, (26)

σijk = τk ∀(i, j, k) ∈ A′ (27)

σij = σij′ ∀i ∈ I, (i, j), (i, j ′) ∈ FS(i) (28)

τmin ≤ σij ≤ τmax ∀(i, j) ∈ A,

0 ≤ αij ≤ uij ∀(i, j) ∈ A \A′

0 ≤ αijk ≤ uijk ∀(i, j) ∈ A′

γk
i ∈ {0, 1} ∀k ∈ K, i ∈ I,

where FS(i) and BS(i) denote the set of outgoing and incoming arcs in node i, respectively,
and M is a suitably large value. As in DP , the first term of the objective function is the fixed
cost based on the exchangers’ installation, the second term is the water pumping cost, which is
proportional to the flow coming out of the users in each time interval, hence coefficients cp

ij will
be equal to cp

t on the arcs exiting nodes in U and equal to 0 elsewhere. The third term is the
heat production cost. Note that in this case the amount of energy is given by the water flow
passing through nodes in P multiplied by the difference in temperature between the warm and
the cold flows. Constraints (22) state the water flow conservation constraints imposing that in
each node of the graph the entering flow must be equal to the outgoing one. Constraints (23)
are similar to the flow conservation constraints but refer to the energy flow. Hence the difference
between the energy entering a node and the outgoing one must be equal to the energy absorbed
or produced by that node. Note that the energy is computed again as the product of the flow
and the temperature, giving rise to a non-linear term in the formulation. It is easy to interpret
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the production capacity constraints (24). The energy produced by a given generator in a time
interval (i.e. a node j ∈ P ), given by the flow coming from the supersource s multiplied by
the temperature difference between the warm and the cold flows (i.e. the temperature of arcs
(s, j) and (j, s)), cannot exceed the production capacity of the generator at that time. These
energy production bounds in the case of a node j corresponding to the geothermal source, are
simpler and can be expressed as capacities on the flow of arcs (s, j) (i.e. αsj ≤ usj = 400).
Network design constraints (25) relate flow variables of arcs representing the exchangers with
the exchangers’ selection variables. If a selection variable is set to 0 (i.e. if the exchanger is not
installed) then the flow through the exchanger must be null. Consequently, we must impose also
that exactly one exchanger is installed (26). When exchanger k is installed the returning flow has
a given temperature τk, therefore we impose constraints (27), defining in practice a constraint
on the capacity of absorbing capacity. Note that the temperature is set to τk on the water flow
even if the flow is null. Constraints (28) state that the temperature of the outgoing flow of each
node must be equal on all arcs. This kind of constraints was implicit in model DP but here
we must introduce them so that the flows out of a node do not assume a different temperature,
which is not physically possible, as might happen, for example on the arcs exiting from the
cold water tanks, because it is more profitable to send a colder water flow to the geothermal
source and a warmer one to the methane burner. Finally, we can introduce some flow capacity
and temperature bounds on the arcs if needed. Note that in model DP it was not possible to
express this the temperature bound, therefore model DP ′ appears slightly more general. The
flow capacity are needed, for example in the tanks internal arcs, to model the volume capacity.
Coefficients uij (uijk) give the maximum quantity of flow that can pass through arc (i, j) ∈ A\A′

((i, j, k) ∈ A′).
It is easy to see that DP ′ with a suitable setting of coefficients u and τ is equivalent to

DP . However, as a general modeling framework it seems to be more powerful. For example,
in the same way in which we represented nodes absorbing energy, we can also consider possible
dispersions in the pipes or in the tanks due to imperfect insulation by adding suitable constraints
on the arc temperature, which was not possible in model DP . We did not consider these aspects
in the interest of simplicity, since in the case study of Ferrara the distribution network is almost
perfectly insulated and no dispersion has to be accounted for.

Observe that, even though this type of formulation gives a very neat structure to the problem,
the model, besides containing some 0-1 variables, is still non-linear, as are the objective function
and constraints (23) and (24), and is thsu still as difficult as DP to solve with commercial
software.

5.2 A “two temperatures” network flow model

In this section we try to limit the impact of non-linearities, while maintaining the network
structure of the model, which is helpful both from the modeling and from the computational
efficiency viewpoint. The idea behind the simplification that makes the problem almost linear
and more tractable comes from everyday experience. Indeed, when we want to wash our hands
with lukewarm water, we opportunely mix the water coming from the hot and cold taps. In
order to transpose this practice into our optimization problem, we double all the nodes and the
arcs of the original graph G on which model DP ′ is based. For each node i ∈ N we will have
the corresponding hot (ih) and the cold (ic) nodes in the new graph Ḡ = (N̄ , Ā), while an arc
(i, j) ∈ A will have a pair of corresponding arcs (ic, jc) and (ih, jh) in Ā. The arc flow circulates
separately among hot nodes and cold ones, except in correspondence with energy generating or
absorbing nodes of G. A portion of the doubled network is sketched in Figure 5.

Let N̄c and N̄h be the cold and hot nodes, and let Āc and Āh be the arcs connecting nodes
in N̄c and N̄h respectively and for which the corresponding arcs in A exist. We will denote by
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sc

sh

Cold Tank

User 1

User 2

Warm Tank

Generators

Figure 5: Two temperature network flow

τmax and τmin the temperature of the flow circulating in the subgraphs induced by hot and cold
nodes. Let us consider two arcs (ic, jc) ∈ Āc and (ih, jh) ∈ Āh corresponding to arc (i, j) ∈ A,
the energy carried by the two flows αicjc and αihjh

is computed as the sum of the two flows
multiplied by their temperatures, and must be equal to the energy carried by the flow on the
corresponding arc (i, j) in G, that is σijαij = τminαicjc + τmaxαihjh

. However, note that in this
case the flow temperatures in the hot and cold arcs are constant and the energy depends only
on the hot and cold water flows. The energy conservation constraints in the case of a transit
node j which neither absorbs nor generates energy are:

τmin(
∑

(ic,jc)∈BS(jc)

αicjc −
∑

(jc,ic)∈FS(jc)

αjcic) + τmax(
∑

(ih,jh)∈BS(jh)

αihjh
−

∑

(jh,ih)∈FS(jh)

αjhih) = 0

which are implied by the flow conservation constraints on nodes jc and jh.

lh1ih1

ih

lhrihp

ic1

icp

lc1

lcr

ic

αihic

Figure 6: A node absorbing energy

For the nodes generating or absorbing energy, the energy conservation constraints can be
simplified with respect to (23). A node j of G, representing a user, absorbing energy implies that
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the outgoing water flow temperature is lower than the entering one. Since in Ḡ we assume to
have flows with fixed temperatures, this loss of heat can be represented by a flow transiting from
the hot node jh to the cold one jc, so that the overall balance is equal to the energy absorption
Dj > 0 (see Figure 6). In this case the energy conservation constraint is

τmin(
∑

(jc,ic)∈BS(ic)

αjcic −
∑

(ic,jc)∈FS(ic)

αicjc) + τmax(
∑

(jh,ih)∈BS(ih)

αjhih −
∑

(ih,jh)∈FS(ih)

αihjh
) = Di

(29)
since, by flow conservation the flow on arc (jh, jc) is given by:

αjhjc = −(
∑

(ic,jc)∈BS(jc)

αicjc −
∑

(jc,ic)∈FS(jc)

αjcic) = (
∑

(ih,jh)∈BS(jh)

αihjh
−

∑

(jh,ih)∈FS(jh)

αjhih)

energy conservation constraint (29) becomes:

αjhjc =
Dj

τmax − τmin
.

lh1ih1

ih

lhrihp

ic1

icp

lc1

lcr

ic

αicih

Figure 7: A node generating energy

Similarly, in the case of a generating node j of G (thus having Dj < 0), we will have an arc
(ic, ih) in Ā (see Figure 7), and the energy conservation constraint becomes:

αjcjh
= −

Dj

τmax − τmin
.

The other set of constraints of DP ′ which need to be linearized are (24). Those constraints
state that the energy flow on a given arc cannot exceed a given production capacity. In the new
graph Ḡ this is simply modeled by a flow capacity constraint on the arcs corresponding to the
energy generation, that is:

αjcjh
≤

Qj

τmax − τmin

In this new problem representation, the only constraints that create some difficulties and
turn out to be non-linear are those imposing that the flow temperature must be the same on
all arcs exiting each node (i.e. constraints (28)). Since now the temperature is derived as the
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average of the hot and cold flows these constraints for any pairs of nodes ih ∈ Nh and ic ∈ Nc

are written as follows:
αihjh

αicjc

=

∑

lh∈FS(ih)
αihlh

∑

lc∈FS(ic)
αiclc

(30)

for each pair of arcs (ih, jh) and (ic, jc) carrying a non-zero flow. These equations clearly impose
that the flow temperature is the same on all arcs outgoing from i.

Unfortunately these constraints are non-linear. However, we can consider approximating
them so that a linearization is possible. The idea is to divide into intervals the range of values
that the flow of each arc and the sum of the flows outgoing from each node can assume, and
by introducing a set of 0 − 1 variables defining which interval the flows belong to. Let [0, d1],
[d1, d2], . . ., [dL−1, dL] be such intervals, let y`

ih
and y`

ic
be the 0 − 1 variables associated with

the flow outgoing from nodes ih and ic respectively, and let y`
ihjh

and y`
icjc

be those related to
the flow on arcs (ih, jh) and (ic, jc). Considering a suitably small value ε we have:

εy1ihjh
+

L
∑

`=2

d`−1y
`
ihjh

≤ αihjh
≤

L
∑

`=1

d`y
`
ihjh

(31)

εy1icjc
+

L
∑

`=2

d`−1y
`
icjc

≤ αicjc ≤
L
∑

`=1

d`y
`
icjc

(32)

for each pair of arcs (ih, jh) and (ic, jc), while for each pair of nodes ih and ic we have:

εy1ih +
L
∑

`=2

d`−1y
`
ih
≤

∑

jh∈FS(ih)

αihjh
≤

L
∑

`=1

d`y
`
ih

(33)

εy1ic +
L
∑

`=2

d`−1y
`
ic ≤

∑

jc∈FS(ic)

αicjc ≤
L
∑

`=1

d`y
`
ic . (34)

Note that 0-1 variables y and the corresponding constraints must be introduced only for the
pairs of nodes having more than one outgoing arc, which are the only once affected by equal
temperature constraint. In our case this happens only in the nodes representing the cold water
tanks where there are some arcs going toward the generators, hence they are of limited number.

Besides the above constraints needed to relate variables y with the corresponding flow vari-
ables α, we add some consistency constraints that state that no more than one y variable for
each node or arc is equal to 1. The equal temperature constraints (30) are approximated by
making use of the 0-1 variables: in practice we want to avoid the following configurations of
values:

i)
∑

lh∈FS(ih)

αihlh > 0,
∑

lc∈FS(ic)

αiclc > 0, αihjh
> 0 and αicjc = 0

which is avoided by the following constraints:

L
∑

`=1

yl
ih
+

L
∑

`=1

yl
ic +

L
∑

`=1

yl
ihjh

− 2 ≤
L
∑

`=1

yl
icjc

;

ii)
∑

lh∈FS(ih)

αihlh > 0,
∑

lc∈FS(ic)

αiclc > 0, αicjc > 0 and αihjh
= 0
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which is avoided by the following constraints:

L
∑

`=1

yl
ih
+

L
∑

`=1

yl
ic +

L
∑

`=1

yl
icjc
− 2 ≤

L
∑

`=1

yl
ihjh

;

iii) consider d`−1 ≤
∑

lh∈FS(ih)
αihlh ≤ d` and d`′−1 ≤

∑

lc∈FS(ic)
αiclc ≤ d`′ and dg−1 ≤

αihjh
≤ dg and dg′−1 ≤ αicjc ≤ dg′ for suitable `, `′, g and g′ greater or equal to 2, then

y`
ih
, y`′

ic
, yg

ihjh
and yg

icjc
cannot be equal to 1 at the same time if

d`−1

d`′
>

dg

dg′−1
(35)

or
d`

d`′−1
<

dg−1

dg′
; (36)

this condition is easily stated by the constraint

y`
ih
+ y`′

ic + yg
ihjh

+ yg′

icjc
≤ 3.

In the following the set of arcs carrying flow from nodes in N̄h to nodes in N̄c is denoted
by A−, while the set of arcs going in the opposite direction is denoted by A+. In our case
A+ = {(sc, sh)} and A− = {(ih, ic), ∀i ∈ U}. By introducing the transformation αicjc + αihjh

= αij and assuming a temperature τmax for the hot flows and τmin for the cold ones, problem
DP ′ becomes:

DP ′′ : min
∑

(i,j)∈A′

fijγij +
∑

(i,j)∈A′

cp
ij(αicjc + αihih) +

∑

(s,j)∈A

cg
sj(αshjh

(τmax − τmin))

∑

(i,j)∈B̄S(j)

αij −
∑

(j,i)∈F̄ S(j)

αij = 0 ∀j ∈ N̄ (37)

αjhjc =
Dj

τmax − τmin
∀j ∈ U (38)

αscsh
= −

Ds

τmax − τmin
(39)

(τmin − τk)αicjck + (τmax − τk)αihjhk = 0 ∀(i, j, k) ∈ A′ (40)

αjcjh
≤

Qj

τmax − τmin
∀j ∈ P (41)

αihjhk ≤Mγk
i ∀(i, j, k) ∈ A′ (42)

αicjck ≤Mγk
i ∀(i, j, k) ∈ A′ (43)

∑

k∈K

γk
i = 1 ∀i ∈ I (44)

εy1ihjh
+

L
∑

`=2

d`−1y
`
ihjh

≤ αihjh
≤

L
∑

`=1

d`y
`
ihjh

∀(ih, jh), i cold water tank (45)

εy1icjc
+

L
∑

`=2

d`−1y
`
icjc

≤ αicjc ≤
L
∑

`=1

d`y
`
icjc

∀(ic, jc), i cold water tank (46)
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εy1ih +
L
∑

`=2

d`−1y
`
ih
≤

∑

jh∈FS(ih)

αihjh
≤

L
∑

`=1

d`y
`
ih

∀i cold water tank (47)

εy1ic +
L
∑

`=2

d`−1y
`
ic ≤

∑

jc∈FS(ic)

αicjc ≤
L
∑

`=1

d`y
`
ic ∀i cold water tank. (48)

L
∑

`=1

y`
ih
≤ 1 ∀ih (49)

L
∑

`=1

y`
ic ≤ 1 ∀ic (50)

L
∑

`=1

y`
ihjh

≤ 1 ∀(ih, jh) (51)

L
∑

`=1

y`
icjc

≤ 1 ∀(ic, jc) (52)

0 ≤ αij ≤ uij ∀(i, j) ∈ Ā

γk
i ∈ {0, 1} ∀k ∈ K, i ∈ I.

Then constraints deriving from conditions i), ii) and iii) above must be added (even in a dynamic
way, i.e. only when some constraints are violated). Note that now the model is a Mixed Integer
Linear Program and, even if its size depends on the number of intervals used to approximate
the equal temperature constraints, it can be dealt with any commercial Mixed Integer Linear
solver.

5.3 Computational results

A preliminary computational experience on model DP ′′ has been carried out using the opti-
mization language and the tools provided by the commercial package OPL Studio [13] in order
to verify the applicability of the model. Therefore, in contrast with the experiments reported in
Section 4, here the coefficients not refer to a real problem but they are in any case realistic.

As in Section 4.1 we consider the cost of producing one MCal with the methane burner
(cm

t ) equal to 0.063 Euro for each time interval, while the cost of one MCal produced by the
geothermal source (cg

t ) is equal to 0.0015 Euro.
The cost of pumping one cubic meter of water at time t is estimated to be about 0.1kWh per

10 m3. Therefore, we have considered cp
t is equal to cp

t =
gt

10
, where gt are the values reported

in Table 3.
The returning water temperatures (τ k

i ) are assumed to be as follows: the first exchanger
(the traditional one) has a returning temperature equal to the average of the actual current
measured temperatures; the kth exchanger (k = 2, . . . ,K) returns a temperature which is 95%
with respect to exchanger k − 1.

In the same way, the installation cost (f k
i ) is computed as follows:

fk
i =







3.62 k = 1

1.86 + 2.58(1 +
k − 1

20
) k = 2, . . . ,K

.

We have considered four classes of users: houses, offices, schools and hospitals. Their instal-
lation costs and energy demands depend on the size of the classes. In order to take into account
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the different sizes of the classes i ∈ I, we multiply each value f k
i by a factor equal to 1 for homes

and offices, 2 for schools, 4 for hospitals.
The users’ demand for heat is distributed during the day according to their average expected

energy consumption. For example, households generate a peak of demand in the early morning
(from 5 a.m. to 8 a.m.) while schools and offices usually generate a peaks between 8 a.m. and
12 a.m.. In the afternoon, first offices and then homes usually require more energy than the
other users. Finally, we consider that hospitals have a constant energy demand during the day.

In Table 5 we report some data about the size of the problems in terms of variables and
constraints, and we also report the computational times needed to solve the problem with the
mentioned commercial package (CPLEX [12]) on a PC dual-PIII 1GHz having 256Mb of RAM.

number of number of Computation
Day |K| L |N| |A| variables constraints time

Feb. 28 2 5 530 1,297 2,506 27,033 51’25”
Feb. 28 2 7 530 1,297 2,986 129,273 19h06’12”
Feb. 28 2 9 530 1,297 3,466 404,409 52h42’48”
Feb. 28 4 5 530 1,681 2,898 27,609 57’55”
Feb. 28 4 7 530 1,681 3,378 129,849 time limit
Feb. 28 4 9 530 1,681 3,858 404,985 time limit

Table 5: Computational results: time limit equal to 60 hours

Even quite large instances can be solved in a reasonable amount of time. In Table 6 we
report the design results for three different days. Except for January 31, the installation of
exchangers which better exploit the energy sent to the users is profitable only for those days
with high energy demands.

MCal Total type of exchangers obj.
Day |K| E[τ ] meth. geo waste MCal homes offices schools hosp. func.

Jan. 31 2 63.8 47,243 251,444 133,579 432,266 2 2 1 1 6,767
Jan. 31 4 63.6 47,558 253,124 134,472 435,154 3 1 1 1 6,762

Feb. 28 2 58.3 0 205,153 161,606 366,759 1 1 1 1 1,915
Feb. 28 4 58.3 0 205,153 161,606 366,759 1 1 1 1 1,915

Oct. 29 2 60.4 0 269,573 151,194 420,767 1 1 1 1 2,123
Oct. 29 4 60.4 0 269,573 151,194 420,767 1 1 1 1 2,123

Table 6: Exchanger design in different days (L = 5)

looking at the details of the solutions, it is clear that in certain cases the trasde-off between
installation costs and efficiency of management is significant. This seems to be particularly true
when energy sources are maximally exploited as on winter days.

6 Conclusions

District heating systems provide an efficient service and, at the same time, allow a better ex-
ploitation of energy sources, including some alternative resources such as waste, geothermal
sources, and so on. This results in a lower impact on the environment, and in particular reduces
the polluting emissions and gives better control over them. In order to fully exploit the energy
conversion plants for heating service during summer periods as well power generators are often
introduced in the system. Complicated energy tariffs makes the use of quantitative methods
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for resource management of utmost importance in order to have an efficient system. In this
paper we presented a linear programming model for the daily planning of an Italian company.
The system is extended so that more realistic solutions that also consider start-up times and
costs are generated. The computational results that compare the management of the system
currently implemented by the company with that suggested by the model are presented. These
results confirm the accuracy of the model and, even in the simplified setting where the electric
power production is not considered, the model identifies relevant improvements. The model is
then applied to the case in which electric power generation is operating, and the economical
advantage is quantified. The simplicity of the model and the efficiency of computing the opti-
mal solution suggest its use to evaluate different scenarios. A challenging research topic could
be to include in the daily operation management model the fluctuation of energy prices due
to the power supply market liberalization. Finally, a particular design problem is considered:
the problem consists in selecting for each user (or class of users) in the system a suitable heat
exchanger. Indeed, more sophisticated exchangers allow for better exploitation of the energy,
yielding lower management costs. The trade-off between the cost of the exchangers and the
savings must be evaluated. The resulting optimization model, formulated as an extension of
the one used in the daily management, is non-linear. This class of problems is modeled as a
network flow with temperatures which turns out to have applications in other fields as well, for
example clams cultivation [6]. However, by introducing a simple and intuitive linearization the
problem turns out to be easily solved by means of integer linear programming. The preliminary
computational experiments show that the problem can be easily solved even for medium sized
instances.

Since the design model can be applied to other fields, in particular to the design and man-
agement of any energy distribution network, it would be interesting to analyze and develop
possible ad hoc algorithms for the class of network flows with temperatures, in order to exploit
the peculiar structure of the problem.
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