
1

Quadratic Semi-Assignment Problems
on Structured Graphs

by
Federico Malucelli* and Daniele Pretolani*

Abstract: The paper presents a class of polynomially solvable instances of Quadratic Semi-

Assignment Problem. Some properties of this class are illustrated. In the light of these results lower

bounds and solution techniques for the general case are proposed. A computational comparison of

some lower bounds is reported.

Keywords: Quadratic Semi-Assignment Problem, Graph Theory, Lower Bounds, Branch and

Bound.

1. Introduction

In this paper we will study some new solution approaches to the Quadratic Semi-
Assignment Problem (QSAP). In particular we will discuss a class of problems that
can be solved in polynomial time and how these results can be exploited to provide
lower bounds and solution algorithms for the general case.
In order to illustrate the problem we will use the following application example:
consider a distributed computing system with p not necessarily identical processors,
and n processes to be assigned to the processors. Let us call N the set of processes
and M the set of processors. The following data are known:
- during the computation processes i and j exchange fij units of information;
- the time needed to move one unit of information from processor s to processor r

is drs;
- the computation time required by process i when it runs on processor s is eis.
The mapping problem is that of assigning the processes to the processors so that the
global time spent by the system (execution and communication time) is minimized.
Let P be the set of all the feasible assignment functions r:N®M which associate a
processor r(i)ÎM to each process iÎN; the problem can be formulated as a QSAP as
follows:

Z = min { å
i,jÎN

Ê fijdr(i)r(j) + å
jÎN

Ê eir(i), rÎP}. (1.1)

The non zero fij coefficients define the communication pattern between processes,
usually represented by an undirected graph. We will show that the optimal mapping

* Dipartimento di Informatica, Universit� di Pisa, Corso Italia 40, 56125 PISA, Italy

2

can be found in polynomial time when this graph belongs to the class of reducible
graphs.
The QSAP can be also formulated in a more general way: considering the matrix
qijhk i,jÎN, h,kÎM, the problem is:

Z = min { å
i,jÎN

Ê qijr(i)r(j), rÎP}. (1.2)

Throughout the paper, we will consider the first formulation of QSAP; however, our
results can be easily extended to the more general formulation.
Many other problems can be formulated as QSAP, for example clustering and
partitioning [10], assignment of professors to departments [8], some scheduling
problems [5].
The QSAP is well known to be NP-hard [13]; some lower bounds for the problem
have been devised in [8] and [9]. Polynomial classes are presented in [3], [4] studying
distributed computing systems. Sometimes the model has been complicated to take
into account "real life" factors as in [6], [15].
The paper is organized as follows. In section 2 we will introduce the class of
reducible graphs and we will present some of their fundamental properties as well
as recognition algorithms. In section 3 we will devise an algorithm for solving
instances of QSAP whose associated graph is reducible. In section 4 we will propose
some ideas for exploiting the results of section 3 in solving general cases of QSAP, in
particular we will focus on lower bounds. Finally in section 5, some preliminary
computational results will be reported.
In the paper we will use the standard graph terminology introduced in [2].

2. The class of reducible graphs

Consider the undirected graph G(N,A) where n=|N| and m=|A|; G is reducible if
and only if it can be reduced to a single node by the following operations:
- Tail reduction

let i be a node of degree 1 (i.e. there is only one arc incident with node i) and (j,i)
be the arc connecting node i to the rest of the graph G. The graph G can be
reduced to a new graph G' where node i and arc (j,i) have been deleted (see fig.
1). We will denote with Tail(i) the above reduction operation.

i

j

G

j

G'

fig. 1

3

- Series reduction
let i be a node of degree 2 and let (i,j) and (i,h), j¹h, the two arcs incident with i;
the graph G can be reduced to a new graph G' obtained from G by removing
node i, arc(j,i), arc (i,h) and adding a new arc (j,h) (see fig. 2). This operation is
denoted by Series(h, i, j).

i

j

G G'

h

j

h

fig. 2

- Parallel reduction
let a=(i,j) and a'=(i,j) be two ÒparallelÓ arcs of graph G. The graph can be reduced
to a new graph G ' with a single arc between nodes i and j (see fig. 3). This
operation is denoted by Parallel(i, j).

i

j

G G'

j

i

fig. 3

It is easy to see that the class of reducible graphs is a proper extension of the class of
series-parallel graphs, which are reducible to a single arc by a sequence of parallel and
series reductions ([16]). For example, trees are included in the class of reducible
graphs, although they do not belong to the series-parallel class.
In the following we introduce some properties of reducible graphs. These properties
are known to hold for series-parallel graphs.

Property 1
Given a graph G, assume that two different reduction operations, l1 and l2, can be
applied to G, respectively obtaining the graphs G1 and G2. Then there exist two
reductions l1Õ and l2Õ that can be applied to G1 and G2, respectively, giving two
graphs G1Õ and G2Õ which are isomorphic.
Proof
The property is obvious if l1 and l2 apply to disjoint sets of nodes; in this case, l1ÕÊ=Êl2
and l2Õ = l1. The same is true if either l1 or l2 is a parallel reduction; the only
interesting cases arise when series and/or tail reductions are applicable to the same

4

set of nodes. For example, let l1 = Series(i, j, k) and l2= Tail(k); l1 is no more applicable
to G2, but we can set l1Õ = Tail(k) and l2Õ = Tail(j) (see fig 4). Note that G1 and G2 are
equal if node k in G1 is identified with node j in G2. A similar example can be given
when l1Ê=ÊSeries(i, j, k) and l2= Series(h, i, j), and when two different tail reductions
are applied. ■

G

G' G'G

j

i

1

k

i

k
i

1 2=

l'
l

l l'

1

2 2

1

G

j

i
2

fig. 4

Property 2
Suppose repeatedly applying reductions to a graph G as far as possible; the graph GÕ
obtained is independent of the sequence of reductions.
Proof
Let G1 and G2 be two different graphs obtained from G applying two different
sequences of reductions. By repeatedly applying Theorem 1, we can reduce G1 and
G2 to a pair of graphs G1Õ and G2Õ which are isomorphic. Hence, if no reduction
operations can be applied to G 1 and G 2, it follows that G 1 and G 2 must be
isomorphic. ■

Property 2 means that if different reductions are applicable to the same graph, we
can break ties arbitrarily without affecting the final result. This establishes the
confluence property of the reducing operations; this property is well known for
series-parallel graphs [7].

Property 3
If G is a connected graph, any graph GÕ, obtained from G by reduction, is connected.

5

Property 4
Every induced subgraph GÕ of a reducible graph G is reducible.
Proof
Since G is reducible, there is a sequence {l1,É,lk} of reductions that transforms G into
a single node. A sequence {l1',É,lk'} reducing G' to a single node can be obtained as
follows. If the nodes and the arcs of G involved by the operation li are present in G'
then li'=li. Otherwise the following cases must be distinguished:
- if li is a Parallel or Tail reduction, then li' is the "empty" reduction, i.e. leaves G'

unchanged;
- if li is a Series(i,j,k) reduction, then either liÕ=Tail(j) or liÕ is the empty reduction.

■

Property 5
A simple reducible graph G (i.e. without parallel arcs) contains at most 2n-3 arcs.
Proof
Observe that each reduction operation decreases the number of arcs exactly by one;
moreover, an operation Parallel(i, j) can be applied to G only after an operation
Series(i, k, j). Since after at most n-2 series or tail reductions G is reduced to a single
arc, at most 2(n-2)+1 arcs can be deleted, i.e. we have at most 2n-3 arcs in G. ■

We say that a graph has the reducibility property if it is reducible and we say that it
has the series-parallel property if it is series-parallel. In order to give a characterization
of the reducibility and series-parallel properties, we consider the class F of graph
properties which are determined by the 3-connected components, described by Asano
[1]. We report the following characterization, stated in terms of 2-connected
components [14], of the properties in the class F. A graph property m is in F if the
following conditions hold:
i) a graph G has the property m if and only if each 2-connected component of G

has the property m;

ii) for 2-connected components, m is determined by the 3-connected components.

It is easy to see that a 2-connected component of a reducible graph is series-parallel,
since it can be reduced to a single arc without applying tail reductions; actually, a
graph is reducible if and only if its 2-connected components are series parallel, in
other words, for 2-connected components reducibility coincides with series-parallel.
It is known that the series-parallel property is in F [1], hence it follows that the
reducibility property is in F.

6

An algorithm that recognizes reducible graphs can be easily obtained as follows:
given an input graph G, repeatedly apply reductions to G as far as possible; G is
reducible if and only if the resulting reduced graph contains a single node. We will
now show that this algorithm can be implemented in linear O(m) time; without loss
of generality, we assume that G is simple.
Graph G is represented by adjacency lists: for each node i, AD(i) contains the arcs
incident with i. Each AD(i) is implemented as a doubly linked list, whose elements
are the arcs of G; each arc eÊ=Ê(i,j) has pointers to the nodes i and j. It is easy to see
that with the above data structures, each deletion and insertion of one arc in AD(i)
takes O(1) time.
Reductions are performed as deletion and insertion of arcs; Tail(i) deletes arc (i,Êj)
from AD(j); Series(j, i, k) deletes arcs (i, j) and (i,h) from AD(h) and AD(j), inserting a
new arc (j,h); Parallel(i, j) deletes two parallel edges a and aÕ from AD(i) and AD(j),
inserting a new arc (i, j).
At the beginning of the algorithm, each list AD(i) is checked to find nodes with
degree two or one; this takes an overall O(m) time. Then, each time a list AD(i) is
modified, we check AD(i) to search for another reduction: if êAD(i)ê is one or two,
then a tail or series reduction is applicable, otherwise, if there exist two parallel arcs
a, aÕ in AD(i) then a parallel reduction is applicable. Note that it is not necessary to
scan the whole list AD(i), but it suffices to scan the first three arcs in AD(i). In fact, if
no parallel arcs are found, there exist three non-parallel arcs in AD(i); if G is
reducible, at least one AD(i) has less than three non-parallel arcs.
Observe that each AD(i) can be checked in O(1) time, and that at most two lists must
be checked after each reduction. Since at most m reductions can be applied to G, the
recognition algorithm can be implemented with an overall O(m) complexity.
It is not difficult to devise an algorithm that, given a non-simple graph G, performs
all possible parallel reductions in time O(m). It follows that we can recognize non-
simple reducible graphs in linear time. Moreover, if a graph GÊis not reducible, we
can perform all the possible reductions for G in linear time.

3. A solution algorithm for QSAP on reducible graphs

Consider the undirected graph G(N,A) where the set of nodes N is {1,É,n} (each
node represents a process) and the set of arcs A is determined by the coefficients fij,
that is A={(i,j): fij>0 or fji>0}; let m=|A|. Further on, we assume that G is connected;
in fact, if G is not connected, one independent QSAP for each connected component
of G can be identified.

7

When the graph G is reducible, the corresponding QSAP can be solved in
polynomial time. In order to carry out the computation of the QSAP optimal
solution, we introduce some labels associated to the nodes and the arcs of G. In
particular we will associate the labels uir "rÎM to each node iÎN, and the labels virjs
"r, sÎM to each arc (i,j)ÎA. Initially these labels are set as follows:

uir = eir, "iÎN, "rÎM,
virjs = fijdrs+fjidsr, " i, jÎN, "r, sÎM.

Note that initially the labels associated to each node represent the set of all possible
processor assignments for the related process, and their initial value is the execution
time of the process on the different processors. The arc labels represent the set of all
possible assignments for a pair of communicating processes; their initial value is the
communication time.
Our solution method consists of updating the labels according to the reduction
operations performed on G. At the end, when G has been reduced to a single node,
the minimum label of that node gives the optimal solution value.
The label updating can be described as follows:
- Tail reduction

Let iÎN be a node of degree 1 and (j,i)ÎA be the arc connecting i to the graph G.
Labels ujr are modified as follows, for each rÎM:

ujr = ujr + min {uis + visjr, sÎM}. (3.1)
In practice ujr is modified in order to take into account the best possible
assignment for i once j has been assigned to r. This operation can be carried out
in O(p2) time.

- Series reduction
Let iÎN a node of degree two and let (i,j) and (i,l) be the two arcs incident with i.
Labels vjrls are set as follows, for each r, sÎM:

vjrls = min {vjrit + vitls + uit, tÎM} (3.2)
The vjrls gives the best possible assignment for i once j and l have been assigned
to r and s, respectively. This operation can be carried out in O(p3) time.

- Parallel reduction
Let a'=(i,j) and a"=(i,j) be two parallel arcs of graph G. Let v'irjs and v"irjs be the
labels associated to a' and a" respectively. The labels virjs of the new arc that will
substitute a' and a" in G' are obtained as follows:

virjs = v'irjs + v"irjs, " r, s ÎM.
This operation can be carried out in O(p2) time.

8

Since at most O(n) reduction operations are applied on a reducible graph G, the
overall complexity of the transformations is O(np3).
The computation above gives the value of the optimal solution. In order to obtain
an optimal assignment r associated to that value an extra computation is needed. To
this end, we store in a stack the local choices we make in each Series or Tail
reduction operation. Note that we do not need to store any information when
executing a Parallel reduction, since this operation does not perform any
assignment.
The information stored in the elements of the stack is the following:
- Tail reduction

let (i,j) and i the arc and the node eliminated by the reduction, and for each rÎM
denote by i(r) the index sÎM giving the minimum in (3.1). We put on the stack a
label Tail, the nodes i and j, and the set {i(r):Êr=1,É,p};

- Series reduction
let (i,j) be the new arc introduced by the reduction and let h be the eliminated
node; for each pair r, s ÎM, denote by h(r,s) the index tÎM giving the minimum
in (3.2). We put on the stack a label Series, the nodes i, j and h, and the set {h(r,s):
r,s=1,É,p}.

At the end of the reduction, let uir be the minimum label of the remaining node i;
we set r(i)Ê= r. Then, we repeatedly remove elements from the stack and, according
to the label Tail or Series, we perform the following operations:

Tail: let r = r(j); set r(i) = i(r);
Series : let r = r(i) and s = r(j); set r(h) = h(r,s).

It is easy to see that r(j) (r(i) and r(j), respectively) has been already assigned when
a Tail (Series, respectively) reduction is considered, hence the above method
correctly finds an optimal assignment r.

4. Enumerative methods for QSAP

In this section we consider the general case of QSAP, that is instances whose
associated communication graph is not necessarily reducible. In particular, we
investigate the application of our method for polynomially solvable cases in the
framework of enumerative algorithms.
In the following we will refer to a general and rather simplified Branch and Bound
schema. The original QSAP problem S is reduced to a sequence of subproblems,
each one corresponding to a node of an enumeration tree T, whose root corresponds
to S. The leaves of T correspond to subproblems whose optimal solution has been
determined; each internal node u of T has p sons, obtained from the problem

9

corresponding to u by selecting a (not yet assigned) process i and assigning it to the
p different processors. The set Q contains the subproblems to be examined, the
algorithm terminates when Q is empty. No assumption is made on the way
subproblems are selected from Q.
A standard bounding technique is used to prune the enumeration tree, thus ignoring
subproblems whose optimal solution cannot improve on the value U of the current
incumbent solution. Denote by Z(r) the cost of the assignment r; our Branch and
Bound schema (for minimization problems) can be written as follows:

Enumeration Schema
input: a QSAP problem S;
output: a minimum cost assignment;
Step 0 (initialization) Set Q = {S}; find a feasible assignment rI; set U = Z(rI);
Step 1 (termination) if Q is empty, then return r I; otherwise select and

remove a subproblem P from Q;
Step 2 (bounding) generate a lower bound L for P ; if L³U then go to

Step 1; generate a feasible solution r for P; if Z(r) < U then set U = Z(r),
rI= r; if L = Z(r) then go to Step 1;

Step 3 (branching) Select a process i not yet assigned in P, add to Q the
subproblems P1,É,Pp: in problem Pr the process i is assigned to processor
r. Go to Step 1.

A partial assignment on a subset DÍN is a function j that for each iÎD gives the
processor j(i) to which i is assigned. An extension of a partial assignment j is an
assignment r such that r(i) = j(i) for each iÎD. It is easy to see that each subproblem
P is characterized by a different partial assignment j, and that P corresponds to the
problem of finding the extension r of j with minimum cost. This problem can be
formulated as a QSAP problem on the set N' = N\D of not yet assigned processes; in
fact, the objective function can be written as:

å
i,jÎD

Ê fijdj(i)j(j) + å
iÎD

Ê eij(i) + å
i,jÎN'

Ê fijdr(i)r(j) + å
iÎN'

Ê eir(i) +

å
iÎN',jÎD

Êfijdr(i)j(j) + å
jÎN',ÊiÎD

ÊÊfijdj(i)r(j).

Since the first two terms of the sum are constant, the objective function can be
replaced by

å
i,jÎN'

Ê fijdr(i)r(j) + å
jÎN'

Ê e'ir(i)

10

where:
e'iÊr = eiÊr + å

jÎD
Ê fijdrj(j) + fjidj(i)r.

In practice, the cost of the communications between a process iÎN' and those in D is
included in the linear cost of i. Note that the communication graph corresponding to
each subproblem P is the induced subgraph of the original communication graph G
obtained by deleting the nodes in D.

4.1 Lower bounds
The existence of sharp and efficiently computable lower and upper bounds is a
crucial part of enumerative algorithms. The problem has been widely studied in the
literature; for example [8] and [9] present efficient methods for solving relaxations of
particular formulations of QSAP.
Our algorithm for polynomially solvable cases can be applied to obtain bounds. This
approach has been partially exploited in [12], where a preliminary experimental
study is reported.
Let G=(N,A) be a non reducible communication graph corresponding to a given
QSAP problem; and let Gr= (N, Ar) be a reducible subgraph of G. We can define a
new problem restricted to graph G r, in which only communication costs
corresponding to arcs in Ar are considered; the objective function becomes:

å
(i,j)ÎArÊ

Êfijdr(i)r(j) + fjidr(j)r(i) + å
iÎN

ÊeiÊr(i).

Assume that the quadratic costs corresponding to arcs in A\Ar are non-negative: it
can be verified that the optimal solution Zr of the problem restricted to Gr is a lower
bound for the original problem. We call subgraph bound the value obtained in this
way.
Consider the partition of the set of edges A\Ar in k subsets A1,É,Ak such that each
partial graph Gl= (N, Al), 1 £ l £ k, is reducible, and the problems restricted to graphs
Gl, in which linear costs are set to zero:

Zl = min { å
(i,j)ÎAl

Êfijdr(i)r(j) + fjidr(j)r(i): rÎP}.

In the light of the above decomposition, the optimal solution value of (1.1) can be
written as:

Z = Z*
r + å

l

k
ÊZ*

l ,

where Z*
r and Z *

l , 1 £ l £ k, are the costs of the optimal solution of (1.1) in the

problems defined on graphs Gr and Gl, 1 £ l £ k. It is easy to see that ZrÊ£ÊZ*
r and

ZlÊ£ÊZ*
l , hence the sum:

11

L = Zr + å
l

k
ÊZl £ Z*

r + å
l

k
ÊZ*

l =Z

is a lower bound for the original problem. We call partition bound the value L
obtained as above; it is easy to see that the restricted problems Gr and Gl= (N, Al), 1
£ l £ k , can be solved with an overall O(mp3) complexity.
Note that the partition bound can be used also when the nonnegativity hypothesis
of the quadratic costs is relaxed, while the subgraph bound can be used only if the
quadratic costs are non-negative.
Now we address the problem of determining the reducible subgraph Gr. In order to
obtain a sharper bound, it is conceivable to search for a subgraph with a large set of
arcs; moreover, arcs (i,j) corresponding to processes that exchange a large amount
of information should be preferred. Thus one should find a reducible subgraph Gr=
(N, Ar) with maximum weight W(Gr), where

W(Gr) = å
(i,j)ÎAr

Êfij + fji.

Consider the problem of finding the reducible subgraph with the maximum number
of arcs. This problem can be formulated as minimum edge deletion, which is a problem
of the following form: given a graph G, find the smallest set of arcs to be deleted to
obtain a subgraph satisfying a given property p. In our case p is the reducibility
property, which belongs to the class F of properties determined by the 3-connected
components. It has been proven ([1]) that for the properties in F the corresponding
minimum edge deletion problem is NP-Complete, even when G is restricted to be a
planar graph.
Thus the reducible subgraph of maximum cardinality or maximum weight cannot
be easily identified. This is not true, however, if we require that Gr is a tree; in fact,
many efficient algorithms for finding a maximum spanning forest in a graph are
known [14]. The resulting restricted problem can be solved in time O(np2). For the
same reason in the partition bound one may think to restrict Gl, 1£l£k, to be trees.
In this case the resulting complexity is O(mp2).
In practical applications, it is necessary to devise efficient heuristic algorithms to
identify subgraphs with sufficiently large weight. It must be observed that the
maximum weight subgraph Gr does not always give the best lower bound.
Consider the problem whose communication graph is given in Fig. 5. The numbers
near the arcs represent the weights fij + fji.

12

1

G

2

3

4

5 101

1010

1010
1

Fig. 5
We have p=2, drs=1, for each r¹s, and drr=0 for each r; the execution costs are the
following: ei1=0, ei2=1, iÎ{1, 2, 3, 4}; e51=10, e52=0.
A maximum weight reducible subgraph can be obtained deleting arc (1,5); a lower
bound L = 1 is obtained setting r(i) = 1, iÎ{1, 2, 3, 4}, and r(5) = 2. If the arc (3,4) is
deleted instead of (1,5) a bound L = 2 is obtained from the same assignment (which
is the optimal assignment for the problem).
It is conceivable to require Gr to be maximal, i.e. that no arcs in A\Ar can be added to
Ar obtaining a reducible graph. A trivial algorithm to find a maximal reducible
subgraph has a O(nm) complexity; an interesting problem is the one of finding a
maximal reducible subgraph in less than O(nm) time. Similar problems arise when a
partition of the graph into k reducible subgraph is searched.

4.2 Branching selection rules
The solution methods for polynomially solvable cases of QSAP suggest some
possible strategies for selecting the process to be assigned during each branching
step. Suppose that the graph GP corresponding to a subproblem P is reducible; it
follows that P can be solved easily: actually, the optimal solution is obtained by
computing the lower bound. It seems reasonable to adopt a topological selection
strategy, where nodes are selected in order to obtain easily solvable subproblems as
quickly as possible. This strategy would keep the enumeration tree T ÒflatÓ,
minimizing its depth, i.e. the length of the paths from the root to the leaves.
The problem of finding a selecting strategy that minimizes the (maximum) depth of
T can be formulated as node deletion problem: given the graph G, delete a minimum
size set of nodes so that the resulting induced graph has the reducibility property. In
[11] it has been proved that node deletion problems are NP-Complete for all those
graph properties m that are hereditary on induced subgraph, i.e., if G has the
property m, then any induced subgraph does. From Property 4, we can conclude
that the problem of finding an optimal selecting strategy is NP-Complete.
As a consequence, heuristic topological selecting strategies must be devised, such as
selecting the node with higher degree. Note that such a strategy can be determined

13

at the beginning of the algorithm, finding a minimal set D of nodes to delete to
obtain a reducible graph.
Once the set D has been detected, nodes can be selected in any order; actually, a
topological strategy can be combined with many other selection strategies, e.g.
selecting nodes in D with larger costs.

4.3 Branch & Shrink
We know that a subproblem P can be solved when the associated graph
GPÊ=Ê(NP,ÊAP) is reducible; if this is not the case, it may be possible to directly apply
some reduction operations to GP, obtaining a new ÒshrunkenÓ graph GRÊ=Ê(NR, AR).
Note that NRÌNP, but in general AR ÍÊ¤ AP, since new arcs can be added to the graph
applying the reduction operations. According to the performed reductions, the
techniques defined in section 2 can be used to obtain new linear costs associated to
nodes in NR and new quadratic costs on arcs in GR. The new problem PR obtained in
this way is equivalent to P; in particular, given any assignment rR : NR®M the
optimal extension rP: NP®M of rR can be obtained with the same technique used to
find the optimal assignment for an easy solvable instance.
The above considerations suggest a ÒBranch and ShrinkÓ approach, in which a
subproblem P is replaced, whenever possible, by a reduced problem PR obtained by
applying to GP all the possible reductions. In this approach some reduction
operations, which may be repeatedly applied to the subgraphs of graph GP during
the Branch and Bound algorithm, will be applied only once and directly to GP. This
idea can save a considerable amount of computation, since repeated operations are
avoided and smaller graphs are to be considered, e.g. when looking for reducible
subgraphs.
In some cases, however, the shrinking can affect the quality of the subgraph lower
bound. Consider again the graph G shown in Fig. 5; arcs (1,5) and (5,2) may be
replaced by a single arc (1,2) by applying a series reduction. Then, a reducible
subgraph of the resulting graph is obtained by deleting arc (1,2). As a result, a lower
bound L = 0 is obtained from the assignment r(i) = 1, iÎ{1, 2, 3, 4}: recall that a lower
bound greater or equal to one can be obtained by selecting a maximal reducible
graph of G.
Clearly, in order to avoid such pathological behaviour, an effective ÒBranch and
ShrinkÓ algorithm requires a careful implementation of the subgraph selection
phase.

14

5. Numerical comparison of lower bounds

In the present section we will compare the lower bound presented in [12] with the
lower bounds obtained by applying the results of section 4.1; in particular we will
focus on the effectiveness of the partition technique and the use of reducible graphs.
In the following tables Tree and Red are the subgraph bounds which use a spanning
tree and a maximal reducible subgraph, respectively; Tree_P, and Red_P are the
partition bounds which use a decomposition into trees and reducible subgraphs,
respectively. Problems with n=100 and m={400, 1000, 2500} have been considered.
Each table entry contains the average value of the bound over a sample of 10
instances.
Tables 1 and 2 report the results for QSAP of type (1.1), where drs (r¹s) represents
the distance on a mesh of size 2´4 (p=8), 4´4 (p=16) and 4´8 (p=32), fij are integer
and uniformly distributed in [1..10]. In table 1 the distance drr, r=1,É,p, is uniformly
distributed in [0..1]; the linear costs eir are equal to deir, where d=mp/4n and eir are
integer and uniformly distributed in [1..10]. This implies that, on average, the total
linear cost is of the same order of the total quadratic cost. In table 2 drr ,r=1,É,p, is
equal to the maximum distance; the linear costs eir are uniformly distributed in
[1..10]. The choice of having nonzero distances drr, r=1,É,p, is suggested by the fact
that if drr=0, r=1,É,p, the partition bound is equal to the subgraph bound. In fact for
the problems on graphs Gl, 1 £ l £ k, an optimal solution Zl = 0 can be obtained by
assigning all processes to the same processor.

m p Tree Red Tree_P Red_P
400 8 1233.3 1360.4 1878.9 1962.2
400 16 1227.8 1378.7 1873.4 1980.5
400 32 1600.5 1859.1 2790.3 2973.0
1000 8 2723.8 2924.5 4352.3 4495.4
1000 16 2672.4 2911.7 4300.9 4482.6
1000 32 3378.8 3753.5 6406.9 6682.6
2500 8 6416.6 6698.1 10443.4 10653.8
2500 16 6344.2 6668.0 10371.0 10623.7
2500 32 8065.1 8600.8 15552.9 15958.2

table 1

15

m p Tree Red Tree_P Red_P
400 8 435.8 573.8 1625.3 1692.5
400 16 391.5 531.7 1581.0 1650.4
400 32 444.4 646.7 2384.2 2495.6
1000 8 411.6 613.9 3721.0 3951.6
1000 16 370.3 578.7 3679.7 3916.4
1000 32 368.9 669.7 5684.2 6097.5
2500 8 411.2 703.7 8952.3 9808.0
2500 16 370.0 673.1 8911.1 9777.4
2500 32 358.5 777.3 13900.0 15356.2

table 2
The above tables show that Red dominates Tree, and the difference between the
two bounds is usually larger for problems in table 2.
Moreover the partition technique is worth applying, in particular when quadratic
costs dominate the linear ones (see table 2). Note that the partition is effective also
when spanning trees are used; in fact, the relative difference between Red_P and
Tree_P is usually smaller than that of Red and Tree.
Table 3 reports the results for problems of type (1.2), where both the quadratic and
the linear costs are uniformly distributed in [0..10].

m p Tree Red Tree_P Red_P
400 8 188.9 229.8 196.7 252.2
400 16 105.1 138.8 105.1 138.9
400 32 86.1 133.4 86.1 133.4
1000 8 190.9 263.7 218.2 394.2
1000 16 108.0 170.4 108.0 183.9
1000 32 85.7 172.1 85.7 191.6
2500 8 192.9 304.7 271.3 849.9
2500 16 106.1 199.2 106.1 326.4
2500 32 84.9 218.6 84.9 416.2

table 3
For these problems, the partition technique is sometimes less effective than in the
previous cases, in particular when p is large. Nevertheless Red_P gives good
improvements when m is large. On the contrary the improvement of Tree_P on
Tree is often negligible. This can be explained by the fact that, if qijrsÊ=Ê0 occurs with
high probability, the tail operation is likely to leave node labels uirÊ unchanged. Since

16

when trees are considered, only tail reductions are used, and most of the values Zl

are likely to be zero.
Remark that we reported for problems of large size in order to put in evidence the
typical behavior of the bounds. Problems of such a large size can be considered
quite difficult to solve (see for example [12]).

6. Conclusions and future work

We defined a polynomial solution method for a class of QSAP instances. This
method can be exploited within a Branch an Bound algorithm to obtain lower
bounds or selection strategies; it also suggests a different enumerative approach,
based on graph shrinking operations.
It must be remarked that the partition bound is independent of the signs of the costs
and can be applied to different formulations of QSAP; this is not true, for example,
for other lower bounds proposed in the literature ([8], [9], [12]). The preliminary
computational results show that the bounds used in [12] can be quite poor for some
classes of problems.
In this paper we have discussed in detail the implementation of our method and its
use in enumerative algorithms. In particular, we have pointed out that finding
ÒoptimalÓ lower bounds or selection strategies is a hard problem. A more extensive
computational experience is needed in order to assess the effectiveness of the
proposed approaches and how they compare with other more traditional methods.
During the Branch and Bound computation, an interesting problem is the one of
finding reducible subgraphs efficiently, in particular when they are required to be
maximal. For this problem the use of reoptimization techniques may be exploited
successfully, as it happens for the Maximum Spanning Tree problem.

References
[1] Asano, T., "An application of duality to edge-deletion problems" SIAM Journal

on Computing, 1986. 16(2): pp. 312-331.
[2] Berge, "Graphs and Hypergraphs" 1973, North Holland.
[3] Bokhari, S.H., "Assignment problems in parallel and distributed computing"

Boston: Kluwer Academic Publishers.
[4] Bokhari, S.H., "A shortest tree algorithm for optimal assignments across

space and time in a distributed processor system" IEEE Transactions on
Software Engeneering, 1981, SE-7: pp. 583-589.

[5] Chretienne, P., "A polynomial algorithm to optimally schedule tasks on a
virtual distributed system under tree-like precedence constraints" European
Journal of Operational Research, 1989, 43, pp. 225-230.

17

[6] Dixit, V.V. and D.I. Moldovan, "The allocation problem in parallel production
systems". Journal of Parallel and Distributed Computing" 1990, 8: pp. 20-29.

[7] Duffin, R.J., "Topology of series-parallel networks" J. Math Anal. Appl., 1965,
10: pp. 303-318.

[8] Gallo, G. and B. Simeone, "Optimal grouping of researchers into departments"
Ricerca Operativa, 1993, 57: pp. 45-69.

[9] Gallo, G., E.M. Tomasin, and A.M. Sorato, "Lower bounds for the quadratic
semi-assignment problem" 1986, Rutgers University, New Brunswick, NJ
08903.

[10] Hansen, P. and K. Lih, "Improved algorithms for partitioning problems in
parallel, pipelined and distributed computing" 1989, Rutcor, Rutgers
University, New Brunswick.

[11] Lewis, J.M. and M. Yannakakis, "The node-deletion problem for hereditary
properties is NP-complete" Journal of Computer and System Sciences, 1980,
10(2): pp. 219-230.

[12] Magirou, V.F. and J.Z. Milis, "An algorithm for the multiprocessor assignment
problem". Operations Research Letters, 1989. 8: pp. 351-356.

[13] Sahni, S. and T. Gonzalez, "P-complete Approximation Problems" ACM
Journal, 1976. (23): pp. 555-565.

[14] Tarjan, R.E., "Data Structures and Network Algorithms" 1983, SIAM
Publications.

[15] Towsley, D., "Allocating programs containing branches and loops within a
multiple processor system" IEEE Transactions on Software Engeneering, 1986,
SE-12(10), pp. 1018-1024.

[16] Valdes, J., E.L. Lawler, and R.E. Tarjan, "The recognition of Series Parallel
digraphs" SIAM Journal on Computing, 1982, 11(2): pp. 299-313.

