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Shiftable Interval Graphs
Federico Malucelli(*), Sara Nicoloso(**)

Abstract: A Shiftable Interval Graph (SIG) is defined by a set of intervals and a set
of windows associated with the intervals. Each interval does not have a fixed
position, but it is allowed to move, provided that it remains completely contained into
its window. Once a position has been fixed for all the intervals, the  graph becomes
an usual interval graph. In this paper we address the problem of finding the position
of the intervals, which minimizes or maximizes some classical measures of the graph,
such as clique number, stability number, chromatic number, clique cover number.
We mainly focus on complexity aspects, bounds and solution algorithms. Some
problems are  solvable in polynomial time, others are proved to be NP-hard.
Moreover some subclasses of  SIG's ,for which exist polynomial algorithms exist, are
characterized. Many practical applications can be reduced to problems on SIG's, and
SIG's seem to be an interesting modeling framework.

1.ÊIntroduction and general definitions

In the present paper the class of Shiftable Interval Graphs (SIGÕs) is introduced as an
extension of the class of interval graphs (IGÕs) (Golumbic 1980). For this class of graphs we
will study the well known concepts of clique, independent set, cover by clique, coloring. In
particular we will analyze the complexity of determining some characteristic measures on
SIGÕs (such as min or max clique number, min or max stability number, etc.). When
possible we will devise efficient algorithms. For the NP-complete problems, we shall
propose lower and upper bounds and identify subclasses of easy instances.

A SIG S is defined by a set of n triples tiÊ=Ê<li,ri,li> of non-negative integer numbers
satisfying riÊÐÊliÊ³ÊliÊ>Ê0, i.e. SÊºÊ{tiÊ=Ê<li,ri,li>ÊÎÊZ3

+: riÊÐÊliÊ³ÊliÊ>Ê0, for iÊ=Ê1,É,n}. The pair [li,ri]
will be called window wi and the value li will be called the length of the interval associated
with window wi.

It is easy to think of a SIG as a set of intervals each of which is free to move within the
corresponding window, i.e. such that the left endpoint of the ith interval does not lay on
the left of li, and the right endpoint of the same interval does not lay on the right of ri. The
exact position of each interval within its window is easily described by means of the
placement jÊ=Ê[j1,Êj2,É,Êjn], a vector the jth component of which represents the distance
between the left endpoint of the jth interval and the left endpoint, lj, of the corresponding
window wj. A placement jÊis feasible if 0Ê£ÊjjÊ£ÊrjÊÐÊljÊÐÊlj for all j. Thus, once jj has been
fixed to Ðjj, the coordinate of the left and right endpoints of the jth interval are given by
ljÊ+Ê Ðjj and ljÊ+Ê ÐjjÊ+Êlj, respectively.

In what follows, the pair (ti,
Ðji) will represent the fact that the ith interval has been placed

according to Ðji, that is the pair (ti,
Ðji) represents the interval [liÊ+Ê Ðji,ÊliÊ+Ê ÐjiÊ+Êli].
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By interval  model  M( Ê Ðj)  we shall  indicate the set  M ( Ðj)Ê=Ê
{(t1,

Ðj1), (t2,
Ðj2),É, (tn,

Ðjn)}, which is, in fact, a set of intervals of the real line. The intersection
graph of the intervals in M(ÊÐj) will be denoted by G(ÊÐj).

We say that any two intervals [a,b] and [a',b'] intersect when a'Ê<ÊbÊ£Êb'. The
intersection graph G of the intervals is, clearly, an interval graph. Interval graphs are
deeply studied in the literature; often we will exploit some properties of interval graphs to
approach the problems defined on SIGÕs.

The set of all interval graphs G(j) obtained by varying j in all possible ways is called
the family FS associated with the given SIG S. Notice that different values of the placement
vectors j, hence different interval models, may give rise to the same interval graph G(j).

A minimization (maximization, respectively) problem on a SIG S is defined as follows:

Given: a SIG SÊºÊ{tiÊ=Ê<li,ri,li>ÊÎÊZ3+: riÊÐÊliÊ³ÊliÊ>Ê0, for iÊ=Ê1,É,n} and
a function f:ÊFSÊ®ÊZ+,

Find: a graph GÊÎÊFS,
Such That: f(G) is minimum (maximum, resp.) over all graphs in FS.

In other words, an optimization problem on a SIG S consists in identifying an interval
graph GÊÎÊFS on which f(G) attains its optimum value.

If f is defined as a maxÐtype function itself, a minimization problem on a SIG S turns
out to be a minÐmax problem. This happens, for example, when f is defined as the clique
number of G.  In fact, in this case the optimization problem consists in finding a graph
GÊÎÊFS  whose MAXimum complete subgraph has MINimum size. By similar reasoning we
obtain minÐmin, maxÐmin, and maxÐmax problems.

Given an interval graph G we will denote by w(G), c(G), a(G), k(G), d(G) the clique
number (i.e. the size of a complete subgraph of maximum size), the chromatic number
(i.e. the size of a coloring of minimum size), the stability number (i.e. the size of an
independent set of maximum size), the clique cover number (i.e. the size of a minimum
sized covering by complete subgraphs), and the size of the minimum dominating set. The
problems of determining a GÊÎÊFS which minimizes (maximizes) w(G), c(G), a(G), k(G)
and d(G) will be denoted by min (max) w(S), c(S), a(S), k(S) and d(S). Note that given an
interval graph defined on n nodes and m edges, the problems of determining w(G), c(G),
a(G), k(G) takes O(n logn) time (Gupta et al. 1982), while determining d(G) takes O(n+m)
time (Bertossi 1986, Farber 1984).

For some of these problems we shall devise polynomial algorithms. Other problems
will be proved to be NP-hard, and we shall prove some lower and upper bound for them.
Finally, we shall try to characterize subclasses of SIGÕs for which the problems that are
difficult in the general case, can be solved in polynomial time.

Many practical applications can be reduced to these kinds of problems on SIGÕs. Take as
an example some scheduling problems where jobs with ready and due dates are to be
scheduled on a set of identical machines: the ready and due dates of a job can be seen as
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the left and right end point of a window, respectively, and its processing time as the
interval length associated to the same window. We will show how minimizing or
maximizing w(S), c(S), a(S), k(S) and d(S) can be interpreted in this environment.
In a companion paper (Bonfiglio et al. 1997) the problems related to the size of the
dominating set are explored from both theoretical and computational viewpoints.

The paper introduces first some definitions of particular classes of SIG's and some basic
properties (Section 2). Then it considers the problems related to the clique and the
chromatic number (Section 3), the problems related to the clique cover and the stability
number (Section 4). A final section contains some concluding remarks and some directions
for future work.

2. Definitions and basic properties

This section is devoted to discussing the relationship between a given SIG S, the graphs of
the family FS, the interval models which can arise, and the same entities of the so-called
derived SIG which will be introduced in a while.

It is convenient to define the intersection graph HÊ=Ê(V,EH) of the set of windows {[li,ri]:
i=1,É, n} where the nodes of V are in oneÐtoÐone correspondence with the windows of
the given SIG, and an edge connects two nodes u, v if and only if the corresponding
windows intersect. We now observe the following:

Observation 2.1: Any interval graph GÊ=Ê(V,EG)ÊÎÊFS is a partial subgraph of HÊ=Ê(V,EH), in
the sense that EGÊÍÊEH.

Clearly, it is not true that all the partial subgraphs of H are interval graphs (Fig. 1(c)), nor
that every partial subgraph of H belongs to FS, even though it may be an interval graph
(Fig. 1 (d)), as the following Figure shows, where SÊºÊ{t1=<1,7,4>, t2=<3,13,3>, t3=<2,7,1>,
t4=<4,6,1>, t5=<8,12,2>}.
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Fig. 1ÊÑÊ(a) a SIG and a feasible placement; j (b) the graph H;
(c) a partial subgraph of H which is not an interval graph;

(d) a partial subgraph of H which is an interval graph but does not belong to FS,
(e) a partial subgraph of H which is an interval graph and belongs to FS (in fat it is G(j).
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Later on, due to the relation between graphs in FS and feasible placements, we will refer to
the problem of finding a particular GÊÎÊFS as equivalent to that of finding a feasible
placement which induces G.

We distinguish two kinds of edges:

Definition 2.2: An edge (u,v)ÊÎÊEH is strong if and only if (u,v)ÊÎÊEGÊfor any GÊÎÊFS.

Definition 2.3: An edge (u,v)ÊÎÊEH is weak if and only if there exists at least one graph
GÊÎÊFS such that (u,v)ÊÏÊEG.

Obviously, given any edge (u,v)ÊÎÊEH there always exists at least one graph GÊÎÊFS such
that (u,v)ÊÎÊEG.

According to the above definition, the set EH
S  of all strong edges and the set E H

W of all
weak edges form a partition of EH.

From the above observations it follows that the family FS has a finite cardinality, in fact
|FS|Ê£Ê2|EH|Ê<Ê2n2. This is a peculiar property of SIG's, for they allow to map an infinite
number of interval models into the finite set FS. This follows from the fact that ji may
assume one out of an infinite number of real values.

Definition 2.4: A vertex v is short (long, respectively) if the corresponding triple tv verifies
rvÊÐÊlvÊ£Ê2lv (rvÊÐÊlvÊ>Ê2lv ).

The triple tiÊ=Ê<4,13,6> corresponds to a short vertex, the triple tjÊ=Ê<l,16,3> corresponds to
a long one.

According to the above definition, the set VS of all short vertices and the set VL of all
long vertices form a partition of the vertex set V.

Lemma 2.5:
No strong edge connects two long vertices.
Proof:
By contradiction. Consider two long vertices u,v connected by a strong edge (u,v). We
claim that there exist placements ju, jv such that the two corresponding intervals do not
intersect. In particular, either juÊ=Ê0 and jvÊ=ÊrvÊÐÊlvÊÐÊlv, or juÊ=ÊruÊÐÊluÊÐÊlu and jvÊ=Ê0, are
such that one interval lays completely to the left of the other one, proving the lemma. ❏

Let AdjS(v) be the set of vertices connected to v by a strong edge.

Theorem 2.6
Let v be a long vertex. Then AdjS(v) defines a subset of vertices mutually connected by
strong edges .
Proof:
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Consider any two vertices x,yÊÎÊAdjS(u) (clearly, x,y are short vertices, in light of Lemma
2.5). Whatever the placement jx,Êjy, and ju are, intervals x, y intersect interval u, and
clearly intersect each other, as edges (x,u), (y,u) are strong. This proves the claim. ❏

Notice that {vÊ}ÈÊAdjS(v)Êinduce a complete subgraph in K (thus in H).
It is convenient to introduce the graph K defined on the set V of vertices and the set EH

S .
Notice that EH

S Ê=Ê Ç
GÊÎÊFS

ÊEG.
We now introduce the following definition:

Definition 2.7: A SIG is called degenerate if all edges of H are strong.

Notice that in this case one necessarily has |FS|Ê=Ê1 and (the unique) GÊÎÊFS is isomorphic
to H.

Degenerate SIG's arise, for example, when only one feasible placement is possible, that
is  j=0 (case 1), or when  intervals may assume different positions within their windows,
nevertheless the intersection between any two interval persists whatever their placement
is (cases 2 and 3):

(1)ÊÐÊwhen liÊ=ÊriÊÐÊli for all tiÊÎÊS;
(2)ÊÐÊwhen given any two triples tu,tvÊÎÊS one has that

(i) luÊ£ÊlvÊ£ÊruÊ£Êrv implies luÊ+ÊluÊ³ÊrvÊÐÊlv

(ii) luÊ£ÊlvÊ<ÊrvÊ£Êru implies both luÊ+ÊluÊ³ÊrvÊÐÊlv  and lvÊ+ÊlvÊ³ÊruÊÐÊlu;
(3)ÊÐÊwhen liÊ=ÊriÊÐÊliÊÐÊk, for any tiÊÎÊS, for a fixed kÊ³Ê0, and for any two triples tu,tvÊÎÊS

one has that:
(i) luÊ£ÊlvÊ£ÊruÊ£Êrv implies ruÊÐÊlvÊ³Ê2k
(ii) luÊ£ÊlvÊ<ÊrvÊ£Êru implies both ruÊÐÊlvÊ³Ê2k and rvÊÐÊluÊ³Ê2k.

Definition 2.8: A SIG S is proper if and only if any two mutually intersecting windows
wi,Êwj verify liÊ<ÊljÊ<ÊriÊ<Êrj.

The triples of a proper SIG can be numbered in such a way that iÊ<Êj if and only if
liÊ£ÊljÊ<ÊriÊ£Êrj. In what follows we shall always assume that the triples of a proper SIG's are
numbered according to this criterion.

Notice that if S is proper, then H is a proper interval graph, also known as unit interval
graph (Golumbic 1980).

Among the class of proper SIG's we distinguish the following two cases:

Definition 2.9: A SIG S is proper non-decreasing if and only if S is proper and liÊ£ÊljÊfor any
iÊ<Êj.

Definition 2.10: A SIG S is proper non-increasing if and only if S is proper and liÊ³ÊljÊfor
any iÊ<Êj.

Definition 2.11: A SIG S is a (0,1)ÐSIG if and only if liÊ=ÊriÊÐÊliÊÐÊ1, for any iÊ=Ê1,É,n.
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Notice that every interval of a (0,1)ÐSIG can assume either one of at most two positions,
namely the leftmost or the rightmost one, thus jiÊÎÊ{0,1}, iÊ=Ê1,É,n. In this case most edges
are strong; in particular, if every pair i,j of mutually intersecting windows verifies
minÊ{ri,rj}ÊÐÊmaxÊ{li,lj}Ê³Ê3, then all edges are strong, and the (0,1)ÐSIG is degenerate.

A certain subSIG of the given SIG S plays a very important role in many situations. We
define it as follows:

Definition 2.12: The derived SIG Sd associated to the given SIG S is obtained by removing
from S all triples whose window properly contains another window of S.

Note that, clearly, a derived SIG is proper. Moreover, the intersection graph Hd of the set
of windows in Sd is an induced subgraph of H. Notice also that SdÊºÊS if and only if S is
proper, and that every graph GÊÎÊFSd is a partial subgraph of H.

3. The clique number and chromatic number problems

As noticed before, once a placement j is given, the intersection relation among the
intervals in M(j) can be represented by means of a graph G(j)ÊÎÊFS, which clearly is an
interval graph, and the equality w(G(j))Ê=Êc(G(j)) holds for it (Golumbic 1980). This
implies that the result of the optimization of w(S) immediately applies to the same
optimization of c(S). Notice that assuming that li, ri and li are integer for all i=1,É,n,
w.l.o.g. we can limit ourselves to integer j.

3.1 Minimization of w(S) and c(S)

3.1.1 Computational complexity

Consider the following decision problem:

Problem 3.1
Given a SIG S and a positive integer KÊ£Ên, find a feasible placement jÊÎÊZn

+ such that
w(G(j))Ê£ÊK.

Theorem 3.2
Let S be a SIG such that liÊ=Ê0 and riÊ=Êr, iÊ=Ê1,É,n. Problem 3.1 is NP-complete in the strong
sense.
Proof:
Problem 3.1 is easily seen to be in NP. The proof is by reduction from 3-PARTITION, which
is NPÐcomplete in the strong sense (Garey and Johnson 1979): Given 3m+1 positive
i n t e g e r s  b 1 , É , b 3 m , B   withÊB

4 Ê<ÊbjÊ<ÊB2   for any j Ê = Ê 1 , É , 3 m
andå

j=1É3m
Êb jÊ = Ê m B , find a partition of the b j 's into m  subsets b 1 , É , b m , such

that å
bjÎbi

ÊbjÊ=ÊB and |bi|Ê=Ê3 for any iÊ=Ê1,É,m. Now, given any instance of 3-PARTITION we

construct in polynomial time a corresponding instance of Problem 3.1, as follows: we set
KÊ=Êm, and with each  integer bj we associate a triple tjÊ=Ê<lj,rj,lj>, where lj = 0, rj = B and
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ljÊ=Êbj, for any jÊ=Ê1,É,3m. It is easy to see that a feasible placement j exists if and only if 3-
PARTITION is a YES-instance. ❏

The following corollary is a trivial consequence of the previous theorem.

Corollary 3.3
Given an arbitrary SIG S, the problem of minimizing w(S) and the problem of minimizing
c(S) are NP-hard in a strong sense.

3.1.2 Lower bound

Theorem 3.4
w(K)Ê£ÊminÊw(S).
Proof:
It follows immediately recalling that K is a subgraph of any graph GÊÎÊFS. ❏

We now describe how to compute w(K). To this aim it is convenient to consider the graph
K'Ê=Ê(VS,EH

S). It is an interval graph, as it coincides with the intersection graph of the set of
intervals {[r u Ð l u , l u + l u ], for all short triples t u ÊÎ ÊS }. Notice that [r u Ð
lu,lu+lu]ÊÍÊ[lu+ju,lu+ju+lu] for any feasible placement ju. Thus w(K') is easily computed.
By Lemma 2.5 and Theorem 2.6 it follows that

w(K')Ê£Êw(K)Ê£Êw(K')Ê+Ê1.
In order to compute the exact value of w(K) it is sufficient to determine a long vertex v
such that the set Adj(v) has maximum cardinality over all vÊÎÊVL. If |Adj(v)|Ê=Êw(K'), then
w(K)Ê=Êw(K')Ê+Ê1. Otherwise w(K)Ê=Êw(K').

3.1.3 Polynomially solvable cases

Even though the problem of minimizing w(S) has been just proved to be NP-hard on
arbitrary SIGÕs, there are classes of SIGÕs for which problem 3.1 can be solved in
polynomial time.

Algorithm mM-C (min Max Clique) described below outputs a feasible solution, if any,
to Problem 3.1 defined on proper non-increasing SIGÕs. We assume that triples are
numbered by increasing left endpoints. Throughout the algorithm we shall make use of
the following definition:

Definition 3.5

Given a set J of intervals [ai,bi] and an integer t we define the rightmost t-clique point ct(J) as
the rightmost coordinate which belongs to exactly t intervals of J. ct(J) = 0 if J is empty or
no coordinate exists which belongs to exactly t intervals of J.

Fig. 2 shows an example.
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c   (J)3

Fig. 2ÊÑÊThe rightmost 3-clique point (recall that intervals are open on the left).

Algorithm mM-C;
Input: a proper non-increasing SIG SÊ=Ê{ti: i=1,É,n}, K;
Output: a feasible placement j such that w(G(j))Ê£ÊK;

Begin
For iÊ=Ê1,É,n Do

jiÊ:= undefined;
Let IÊ:=Ê¿;
For iÊ=Ê1,É,n Do

Begin
If cK (I)Ê>ÊriÊÐÊl i
Then Return(NO) and Stop
Else Begin
j iÊ=ÊmaxÊ{0, cK(I)ÊÐÊli} ;
IÊ :=Ê IÊÈ Ê{(t i,j i) } ;
End;

End;
Return(YES);
End.

Theorem 3.6
Algorithm mM-C correctly solves Problem 3.1 on proper non-increasing SIG's.
Proof:
We shall prove two facts, namely that: i) the clique number of the intersection graph of
the set of intervals placed according to Algorithm mMÐC does not exceed K, and ii) the
algorithm returns NO if and only if the given SIG is a NOÐinstance.
The first claim is immediate: in fact the algorithm stops as soon as the distance between
the current KÐclique point and the right endpoint of the window under consideration is
smaller than the corresponding interval length.
The ÒifÓÐpart of the second claim follows from the fact that no feasible placement exists
for the given instance.
Let us prove the Òonly ifÓ part of the second claim. Assume that the algorithm returns NO
when iÊ=Êh+1, IÊº Ê{(t1,j 1),É,(th,jh)}, and clearly cK(I)Ê>Êrh+1ÊÐÊlh+1, and assume by
contradiction that S is a YESÐinstance. We have to find a feasible placement ~jh+1 for
interval h+1 so that it does not belong to a clique of cardinality larger than K. Consider the
set J of all the already placed intervals which intersect coordinate cK(I), that is J =Ê{i:Êi£h,
liÊ+jiÊ<ÊcK(I)£ÊliÊ+ji+li}). In order to place interval h+1 we have to shift some interval jÊÎÊJ.
Three cases arise:
a) no interval can be shifted so as to lay completely to the right of cK(I) or completely to

the left of the left endpoint of interval h+1 in its rightmost placement;
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b) there exists an interval jÊÎÊJÊ which can be shifted rightwards so as to lay to the right of
cK(I), that is, there exists jÎJ that admits a feasible placement j'jÊ³Êjj such that its left
endpoint ljÊ+Êj'j lays not on the left of cK(I), namely cK(I)ÊÐÊljÊ£Êj'jÊ£ÊrjÊÐÊljÊÐÊlj;

c) there exists an interval jÊÎÊJ which can be shifted leftwards so as to lay to the left of the
left endpoint of interval h+1 in its rightmost placement, that is, there exists jÎJ that
admits a feasible placement 0Ê£Êj'jÊ£Êjj such that its right endpoint ljÊ+Êj'jÊ+Êlj lays not
on the right of rh+1ÊÐÊlh+1, namely 0Ê£Êj'jÊ£Êrh+1ÊÐÊlh+1ÊÐÊljÊÐÊlj.

If case a) applies, no solution exists, and in fact no feasible placement exists such that the
number of intervals crossing coordinate cK(I) is smaller than k+1.
If case b) applies, as the SIG is non increasing, rjÊÐÊlj Ê³ÊcK(I) implies that rh+1ÊÐÊlh+1Ê³ÊcK(I),
which contradicts the stopping condition of the algorithm, and ~jh+1Ê=ÊcK(I)ÊÐÊlh+1 is a
feasible placement for interval h+1 which does not increase over K  the number of
mutually intersecting intervals.
If case c) applies, the situation is the following. Because of the algorithm behavior, in order
not to exceed K, no interval can be shifted leftwards without shifting rightwards any other
interval. This means that we have to find an interval iÊ<Êj which has to be moved
rightwards in order to allow the leftwards shifting of j. Let I'ÊºÊ{(t1,j1) ,É, (tjÐ1jjÐ1)} and let
J' be the set of all the intervals p which intersect coordinate cK(I'), with p<j. The same kind
of reasoning seen above on the possible shifting of an interval can be iteratively applied,
until case a) applies (which is always the case, for example when cK(I')Ê>Ê0 for the first time
during the execution of the algorithm), which ends the proof. Notice that cK(I') is always
greater than 0, otherwise case a) would apply. ❏

The computational complexity of algorithm mM-C for proper non-increasing SIGÕs is O(n)
if we assume that the windows are already sorted by increasing left endpoint.

Algorithm mM-C can be used to solve the optimization version of the problem by
solving a sequence of problems for different values of K. A good way of operating
consists of applying a dichotomic search on the values of K, as lower and upper bounds
are known for it. Namely, one can apply a dichotomic search for K in the range [1,w(H)],
since 1Ê£ÊminÊw(S)Ê£ÊmaxÊw(S)Ê£Êw(H)Ê£Ên. The number of steps of the dichotomic search
amounts to O(logÊw(H)) which is bounded from above by O(logÊn). This finally gives an
O(nÊlogÊn) time algorithm to solve the optimization version of Problem 3.1 on proper
non-increasing SIGÕs.

3.2 Maximization of w(S) and c(S)

A problem in some sense related to the one just studied is the problem of maximizing
w(G) over the set of all GÊÎÊFS. Unlike the problem of minimizing w(S), that of maximizing
w(S) on arbitrary SIG's, even in its optimization form, can be solved quite easily. Its formal
statement is the following:
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Problem 3.7
Given a SIG S and a positive integer KÊ£Ên, find a feasible placement jÊÎÊZn

+ such that
w(G(j))Ê³ÊK.

One clearly has w(G)Ê£Êw(H) for any GÊÎÊFS, as every G is a subgraph of H. Moreover, one
can conclude that maxÊw(S)Ê=Êw(H), where maxÊw(S)Ê=ÊmaxÊ{w(G),ÊGÊÎÊFS}. In fact a feasible
placement j such that w(G(j))Ê=w(H) does always exist: be x any coordinate which belongs
to exactly w(H) windows (such a coordinate does always exist), be C be the set of indices of
the windows intersecting it (i.e. CÊ=Ê{i: liÊ<ÊxÊ£Êri}), set jiÊÎÊ[0,minÊ{xÊÐÊli,ÊriÊÐÊliÊÐÊli}] for all
iÊÎÊC, and jiÊÎÊ[0,riÊÐÊliÊÐÊli] for all iÊÏÊC. It is easy to see that all intervals i, with iÊÎÊC,
intersect coordinate x, that is, w(G(j))Ê=Êw(H)

As a consequence, the complexity of determining the placement vector j which
maximizes w(S) is dominated by the complexity of determining a complete subgraph of H
with maximum size, which requires O(nÊlogÊn).

4. The stability number and clique cover number problems

For the same reasons discussed at the beginning of the previous section, equation
a(G)Ê=Êk(G) holds for any graph GÊÎÊFS. This fact allows for concluding that, given a SIG S,
the result of the optimization over a(S) immediately applies to the same optimization
over k(S). Notice that assuming that li, ri and li are integer for all i=1,É,n, w.l.o.g. we can
limit ourselves to integer j, like already done in Section 3.

4.1 Maximization of a(S) and k(S)

The present Section is devoted to the problem of maximizing a(G) over all GÊÎÊFS.

Problem 4.1
Given a SIG S and a positive integer K , find a feasible placement j ÊÎ ÊZn

+ such that
a(G(j))Ê³ÊK.

4.1.1 Computational complexity

Theorem 4.2
The optimization version of Problem 4.1 is NP-hard.
Proof:
Consider the one-machine n jobs scheduling problem with ready and due times.  The
problem of minimizing the number of tardy jobs is NP-hard when the ready times are
non-negative (Lenstra et al. 1977).  This problem can be trivially reduced to the
maximization of a(.) on a suitable SIG S, constructed as follows: to each job i having ri, di,
pi as release date, due date, and processing time, respectively, we associate the triple
tiÊ=Ê<ri,di,pi>; we then set S to be the set of all triples ti, iÊ=Ê1,É,n. The size of the maximum
independent set over all graphs GÊÎÊFS is equal to the number of jobs processed on time.

❏
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The following corollary is an immediate consequence of the previous theorem.

Corollary 4.3
The problem of maximizing k(S) is NP-hard.

4.1.2 Lower and upper bounds

Theorem 4.4
a(H)Ê£ÊmaxÊa(S)Ê£Êa(K).
Proof:
The inequalities follow immediately recalling that H and K are supergraph and subgraph,
respectively, of any graph GÊÎÊFS. ❏

We now describe how to compute a(K). We construct an independent set I as follows. VL

is an independent set, by Lemma. Consider any vÊÎÊVL, by Theorem 2.6, only one vertex
out of {v}ÊÈÊAdjS(v) belongs to an independent set. The best choice is to insert v into I.
Then I is completed including a maximum independent set of the interval graph induced
by the vertex set VS\( È

vÊÎÊVL
ÊAdjS(v)).

4.1.3 Polynomially solvable cases

Like already done for the minimization of w(S), we can find classes of SIGÕs which allow
for solving problem 4.1, i.e. for maximizing a(S), in polynomial time.

The maximization of a(S) on proper SIG's can be conducted in O(n2) time by making
use of the algorithm by Kise et al. (Kise et al. 1978), which is based on a dynamic
programming approach.

We now consider the class of proper non-decreasing SIGÕs. It is a subclass of the proper
SIG's class and, of course, the algorithm by Kise et al. applies. Nevertheless, we now
propose an O(n) time algorithm for the problem of maximizing a(S) on them. Again we
shall assume that triples are numbered by increasing left endpoints.

Algorithm MM-IS
Input: a proper non-decreasing SIG SÊ=Ê{ti: i=1,É,n};
Output: a feasible placement j such that a(G(j))Êis maximum;

Begin
For iÊ=Ê1,É,n Do

jiÊ:= undefined;
Let ISÊ:=Ê¿;
p Ê:=Ê l1;
For iÊ=Ê1,É,n do

Begin
If p Ê£ Êr iÊÐÊl i
Then  Begin

j iÊ :=ÊmaxÊ{0,p ÊÐÊ li} ;
IS Ê:=ÊIS  ÊÈ Ê{(ti,j i)};
p Ê := Ê l iÊ+ Êj iÊ+ Êl i

End
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End
End.

Theorem 4.5
Algorithm MM-IS for proper non-decreasing SIGÕs is correct.
Proof:
The proof follows from the observation that, at step i of the algorithm, intervals in IS
isolate the maximum independent set for the subproblem defined by the first i triples
(numbered by increasing left endpoints); moreover the placement ji is such that, among
all possible independent sets of maximum size for the subSIG S'ÊºÊ{tj: jÊ=Ê1,É,i}, it is one
whose rightmost right endpoint is minimum. The proof is by induction. For iÊ=Ê1 we have
ISÊ=Ê{(t1,0)} and the above observation holds. Assume that the observation is true for i and
consider i+1. Either interval i+1 can be added to IS and the observation holds true, or
interval i+1 does not admit a feasible placement which allows its insertion into the
independent set IS. In this second case we could either discard interval i+1 or discard
another interval hÊ<Êi+1 and possibly insert i+1 into IS with a suitable feasible placement; in
this latter subcase, in particular, one has to find a new placement to all intervals h+1,É,i
and then possibly place i+1 in a feasible position, so as to insert it into IS. But, since
li+1Ê³Êli, this second case would produce an IS of the same size to which corresponds a
value of p which can not be smaller than the one corresponding to the previous IS. ❏

If the intervals are already sorted, the complexity of MM-IS is O(n).

4.2 Minimization of a(S) and  k(S)

Now, we discuss the problem of finding a feasible placement j  which defines an interval
graph G whose maximum independent set has minimum size. Thanks to the well-known
relation which holds among the stability number a(.) and the clique cover number k(.) of a
perfect graph, we can re-state the problem as follows:

Problem 4.6
Given a SIG SÊ and a positive integer K , find a feasible placement jÊÎ ÊZn

+ such that
a(G(j))Ê£ÊK.

The solution to this problem is easily found by applying the following algorithm: consider
the intersection graph H of the set of windows; be G a minimum covering by cliques of the
node set of H (it takes linear time to find); for each clique CÊÎÊG, let x be a coordinate
belonging to every window whose corresponding node is in C; for any iÊÎÊC set ji to a
suitable value such that interval i intersects coordinate x (more formally: ji is to be such
that liÊ+ÊjiÊ£ÊxÊ£ÊliÊ+ÊjiÊ+Êli, that is 0Ê£ÊjiÊ£ÊminÊ{xÊÐÊli,ÊriÊÐÊliÊÐÊli}). If there exists windows
whose corresponding node belongs to more than one clique, assign j w.r.t. any one of
them. It is easy to see that such an algorithm finds a placement vector j which minimizes
the size of both a(S) and k(S) and requires a running time linear in the number n of
windows.
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5. Conclusions and future work

In this paper we introduced the class of Shiftable Interval Graphs (SIGÕs) and we analyzed
some problems defined on them. The SIGÕs can be considered as a general framework
which can be used to formulate many practical problems. A quite natural application is in
the field of scheduling. As pointed out in the Proof of Theorem 4.2, a set of jobs can be
represented by a SIG where release and due dates of jobs are represented by windows
and the processing times are represented by interval lengths. In practice a schedule is
given by the feasible placement of the intervals. Thus, minimizing the number of identical
machines is equivalent to minimizing the clique number, or minimizing the number of
tardy jobs is equivalent to maximizing the independent set. Other problems can find a
direct interpretation in terms of SIGÕs. However, the study of the SIGÕs suggests many
other interesting problems for example those related to the dominating set. In this case
the SIGÕs have been a useful tool to prove new results. The purpose of this paper is mainly
introductory, hence only few of the possible features of the SIGÕs have been dealt with;
after the introduction of the basic definitions, we focused on the problems related to the
clique number, the stability number and the size of the dominating set. Many other
problems remain to be investigated, for example gaining a deeper insight into the
maximum dominating set and minimizing/maximizing the size of a totally dominating
set.

Notice that many problems that in the case of Interval Graphs have no sense, when
SIGÕs are considered, gain interest and are far from being trivial; we refer for example to
minimizing or maximizing the minimum clique, or the minimum independent set.

Another interesting problem is the recognition of SIGÕs. Given a graph G whose arcs
can be active or not, and a set of relations between arcs defined as follows: for each arc (i,j)
we have a set of compatible arcs A(i,j) which are always active whenever arc (i,j) is active,
and a set of incompatible arcs AÊÐ(i,j) which are always inactive whenever arc (i,j) is active.
The problem of the SIG recognition consist in determining if the relations between arcs can
be modeled in the framework of a SIG and give a possible set of windows and intervals.

A natural and immediate extension is to consider the Shiftable Circular Arc Graphs, and
to study the complexity of minimizing or maximizing the classical measures an these
classes of graphs.
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