
1

RANDOMIZED HEURISTIC SHEMES FOR THE SET COVERING PROBLEM1

M. S. Fiorenzo Catalano2, F. Malucelli3

Abstract: We propose a general scheme to derive heuristics for the Set Covering Problem. The
scheme is iterative and embeds constructive heuristics within a randomized procedure. A first group
of heuristics is obtained by randomizing the choices made at each step when the solution is
constructed in a way similar to that of the so called "Ant System"; a second group of more efficient
heuristics is obtained by introducing a random perturbation of the costs of the problem instance.
Some computational results are presented. Different parallel implementations of the algorithms are
discussed and some performance measures reported.

Keywords: heuristic algorithms, randomized methods, set covering, parallel algorithms.

1. Introduction

The Set Covering Problem plays an important role in combinatorial optimization. Many important
applications can be formulated in terms of Set Covering, as for example crew scheduling, vehicle
routing, facility location, assembly line balancing, information retrieval [10].
Given a set I = {1, É, m} and a collection of proper subsets of I, F={I1, É, In}, a cover S Í F of I is
such that each element of I belongs at least to one of the subsets in S. If we associate a cost cj with
each subset Ij Î F, and we define the cost of a cover as the sum of the cost of its components, the Set
Covering Problem consists in finding minimum cost cover.
Due to the difficulty of determining the optimal solution (the problem is NP-hard), and due to the
great scale of real life problems, a many heuristic algorithms have been devised. Even though it has
been proved that the existence of a polynomial algorithm approximating the optimal solution within
1/4 log m, implies P=NP [19], in practice most of the heuristics proposed in the literature very
efficiently provide near optimal solutions [9].
In the present paper we intend to propose a class of randomized heuristic algorithms. The scheme of
the algorithms is iterative. At each iteration a feasible solution is constructed; this is done by
exploiting any constructive heuristic present in the literature. The construction of solutions considers
not only the usual goodness criteria, but also the ÒstoryÓ of previously produced solutions, following
the ideas introduced in the so called "Ant System" [12], or the ideas of other adaptive methods. We

1 This work has been supported by Progetto MURST Cofinanziato 1997 "Autocoordinamento di Agenti

Autonomi", and by CINECA - Casalecchio di Reno (BO).
2 MIP - Politecnico di Milano - e-mail: catalano@mailer.mip.polimi.it
3 Dipartimento di Elettronica e Informazione - Politecnico di Milano, Piazza L. da Vinci 32 - 20133 Milano (Italy)

- e-mail: malucell@elet.polimi.it



2

will study the combination of this general scheme with some of the most efficient classical heuristics.
The class of Randomized algorithms (with or without memory) proved to give good results when
applied to the set covering in a large collection of test problems, as reported in [17].
In Section 2 we introduce the basic notation and we review some of the most efficient constructive
heuristic algorithms to be used within the new heuristics. Section 3 illustrates the randomized heuristic
scheme as well as some of the algorithms which can be obtained. Section 4 contains some
computational results. A parallel implementation is quite natural for the randomized heuristic scheme.
In Section 5 we discuss some parallel implementations of the algorithms and we present the
performance evaluation of selected heuristics.

2. Problem formulation and some classical heuristic algorithms

The Set Covering Problem can be formulated in terms of integer linear programming. A 0-1 m´n
matrix A is used to represent the collection of subsets F:

aij = {1 ifÊiÎIj,
0 otherwise.

Decision variables xj, j = 1, É, n, are used to select the subsets in the cover, that is:

xj = {1 ifÊIjÎS,
0 otherwise.

Denoting by cj the cost of including subset j in the solution, the problem is:

min å
j=1

n
Ê cj xj

A x ³ e, (2.1)
xj Î{0,1}, j=1,É,n,

where e denotes the unitary vector.
Further on, we will denote the cost of a solution S by Z(S) = åjÎS cj.
The most efficient exact methods for set covering are based on Branch and Bound [3, 6] and Branch
and Cut techniques [1].

2.1 Constructive heuristic algorithms

Now we present a short survey of some of the most efficient constructive heuristics presented in the
literature. These algorithms will be used within the general scheme of the randomized heuristic (see
Section 3). For a more detailed review see [15], and [10].

Greedy algorithms
Greedy algorithms are among the simplest and most efficient in terms of computational time. The
basic idea is to build a solution starting from S = ¯ and including in S, at each iteration, the ÒbestÓ of
the remaining subsets. There are several criteria to determine the best subset; these criteria characterize
the different greedy algorithms. The general scheme of greedy algorithm is the following:



3

procedure greedy;
begin

S:=¯;
while S does not cover I do
begin

select and remove Ij from F;
S:=SÈ{Ij};
reduce(F)

end
end.

Procedure reduce(F) eliminates from F those subsets dominated by subsets already selected in the
solution.
The selection of the subset can be made according to the criterion proposed by Chv�tal [11]:

Ij = argmax {|Ik|
ck

: IkÎF}. (2.2)

Other criteria ascibe different value to the numerator or to the denominator of (2.2), giving more
strength to the cardinality of the subset or to its cost. For a detailed discussion see [2].
The greedy scheme is used as a base for the Greedy Randomized Adaptive Search Procedure
(GRASP) [13]. The GRASP, in practice, executes several time the greedy; but at each iteration of the
greedy, instead of selecting deterministically the best subset, it picks up randomly one subset from the
more promising ones determined by use of the selection criterion (2.2).

Clustering algorithms
The idea of clustering algorithms is to partition F into groups of ÒsimilarÓ subsets (called clusters).
Let us denote by P this partition. A ÒleaderÓ is selected from each cluster (typically the minimum
cost subset). Let s(P) denote the function which elects the leaders. If the set of leader subsets S is a
feasible solution (i.e. a cover) the algorithm stops; otherwise it is necessary to refine the partition P
and elect the new leaders. The refinement is done by splitting the less homogeneous clusters; let j(P)
be the function which produces the refinement of partition P. Thus the scheme of the algorithm is the
following:
procedure clustering;
begin

P:=P0; stop:=false;
repeat

S:=s(P);
if S does not cover F then P:=j(P)
else stop:=true;

until stop;
end.

One of the most efficient clustering algorithms is presented in [18]. The initial partition P0 is given by
F, that is we initially consider a single cluster containing all subsets. The refinement of the partition is
driven by the minimum spanning forest T of a suitable weighted graph. The nodes of the graph
represent the subsets in the considered cluster, there is an edge between any two given nodes whose
corresponding subsets are in the same cluster, thus at the beginning of the algorithm the graph is
complete, the weight of edge (i, j) is given by the difference between subsets Ii and Ij. The difference



4

dij between two subsets Ii and Ij is given by the cardinality of their symmetric difference, that is dij  =
|(Ii ÈIj)\(Ii ÇIj)|. At each iteration of the algorithm we remove one edge of the forest; this way a
cluster is split into two new clusters and the new forest has one more tree. The selection of which edge
to remove can be made according to different criteria: the maximum weight edge:

(i, j) = argmax{dhk : (h, k)ÎT}, (2.3)

or the edge (i, j) that maximizes dij/cj:

(i, j) = argmax{dhk
ck

: (h, k)ÎT}. (2.4)

Beasley's algorithm
The heuristic algorithm proposed by Beasley [4] usually provides solutions whose value is very close
to the optimum. It is a kind of Primal-Dual algorithm. The idea is to consider the Lagrangean dual of
problem (2.1), where  constraints  AxÊ³ e are relaxed. The problem is

max {j(u): u³0},

and the Lagrangean function is

min {å
j=1

n
Ê(cj - å

i=1

m
Êaij ui)xj: xjÎ{0,1}, j=1,É,n}.

The Lagrangean Dual is approached with a very simple and standard subgradient method where, at
each iteration, a tentative value for multipliers ui is fixed and the Lagrangean function j(u) is
computed; then the value of u is updated and the procedure iterates until some stopping conditions
hold. At each iteration of the subgradient algorithm, a dual solution u is at hand; dual variables u are
used to compute the reduced cost associated with every subset of F. The reduced cost of subset j is
given by the following expression:

cj - å
i=1

m
Êaij ui.

A feasible cover is obtained by selecting all subsets with non positive reduced cost, and, if there are
still uncovered elements of I, the solution is completed by selecting the remaining subsets in a greedy
fashion. At the end, the algorithm makes the solution minimal, that is it eliminates from the solution
possible redundant subsets. Other Primal-Dual algorithms are studied theoretically in [7, 8], where a
worst case bound to the solution value is provided.

3. The randomized heuristic scheme

The general randomized heuristic scheme that we propose is inspired by the Ant System presented in
[12], which is an adaptive metaheuristic that has been applied to several combinatorial optimization
problems yielding good results. The proposed scheme is iterative: at each iteration a (possibly new)



5

feasible solution is constructed. The solutions are constructed according to a probability law. This
probability law considers (i) the usual attractiveness factors (as for example function (2.2) used in the
greedy algorithm or in the GRASP, or functions (2.3) and (2.4) used in the clustering algorithm), in
conjunction with (ii) a memory factor. The memory factor (called trace) takes into account the quality
of the solutions already produced, in such a way that the best encountered solutions increase the
probability that their elements are selected during the successive iterations. Note that this memory
factor is not present in the GRASP, or in other randomized algorithms, but it is a feature typical to Ant
Systems.
Let us discuss in greater detail the memory factor mechanism. Each subset of F is characterized by a
trace value. This value is increased each time that the subset is included in a solution, and the trace
increment is proportional to the quality of the solution. In the algorithm, at each iteration, the trace is
updated by a set H of independent ÒagentsÓ, each of which constructs its own solution according to
the given probability law.
The trace at the end of iteration i is given by the sum of the trace present at iteration i-1 multiplied by a
persistency coefficient rÎ[0,1] and the traces produced by the agents in H during the i-th iteration.
High values of persistency r give a long term memory effect. Formally the trace tj(i) associated with
subset Ij at the end of the i-th iteration is given by:

tj(i) = rtj(i-1) + Dtj(i), (3.1)

where Dtj(i) is the sum of the traces Dth
j (i) related to subset Ij produced by each agent hÎH during

the i-th iteration, that is:

Dtj(i) = å
hÎH

ÊDth
j (i).

Let us recall that the trace has to take into account the quality of the produced solution (i.e. its cost). A
possible expression of the trace is:

Dth
j (i) = 

 î
í
ì1/Zh(i) ifÊjÎSÊproducedÊbyÊagentÊhÊduringÊtheÊi-thÊiteration,
0 otherwise, (3.2)

where Zh(i) is the objective function value of the solution S produced by agent h during the i-th
iteration. If  the value of a lower bound Zlb of the optimal solution is available, an alternative
expression of the trace is:

Dth
j (i) = 

 î
í
ì1/(Zh(i)-Zlb) ifÊjÎSÊproducedÊbyÊagentÊhÊduringÊtheÊi-thÊiteration
0 otherwise (3.3)

We can describe two different algorithmic schemes. In the first, we ÒrandomizeÓ the heuristic which
constructs the solution at each iteration, while in the second we ÒrandomizeÓ the problem instance by
suitably perturbing the costs.



6

3.1 Heuristics obtained by randomizing the greedy and the clustering

The function generate_solution(t,I,F,c) produces a feasible solution taking into account the costs as
well as the trace associated with the subsets. In summary, the scheme of the algorithm is the
following:
procedure randomized;
begin

for each IjÎF do
tj(0):=0; {trace initialization}

for i=1,É,niter do
begin

for each hÎH  do
begin

S:=generate_solution(t,I,F,c);
if Z(S) < Z(best_solution) then best_solution:=S;
for each IjÎF do compute_trace (Dt

h
j (i),S) {using (3.2) or (3.3)}

end;
update_trace(tj(i)) {using (3.1)}

end;
return(best_solution)

end.

This general scheme can be used to devise different heuristics depending on the implementation of the
function generate_solution(t,I,F,c).
Obviously, as the function is called several times, in order to generate the solutions, efficient heuristics
are preferred. To this end, we will study Òrandomized" versions of greedy and clustering heuristics
where decisions, instead of being deterministic, are taken according to a probability law which
considers both attractiveness and memory factors. Other constructive heuristics can equally be
adapted to this general scheme.

Randomizing the greedy
Let us consider the randomization of the greedy algorithm. At each iteration of the greedy the subset
entering the solution is selected according to a probability law. The probability of selecting subset Ij at
iteration i, is given by:

pj(i) = [tj(i-1)]a[fj]b

Sj[tj(i-1)]a[fj]b, (3.4)

where fj denotes the attractiveness factor of subset j, and the summation in the denominator is over all
the subset not yet included in the partial solution. An example of this factor is:

fj = |Ij|
cj

, j=1,É,n. (3.5)

The denominator of (3.4) normalizes the probability values in the interval [0,1]. Parameters a and b
are useful to control the influence of memory and attractiveness. High values of a induce the
algorithm to rapidly converge to a status in which the same solution is always generated. On the other
hand, high values of b make the behavior of the algorithm extremely random. For a discussion on the
best values of a and b see [12]. This algorithm will be called Randomized Greedy.



7

Randomizing the clustering
Let us analyze the randomization of the clustering algorithm. The randomization takes place in the
refinement of the partition. Instead of removing one edge of the spanning forest according to (2.3) or
(2.4), we apply a probability law. Note that in this case the trace is associated with the arcs of the
spanning forest. Let T be the set of arcs defining the spanning forest of the iteration under
consideration. The probability of removing edge aÎT is given by:

pa(i) = [ta(i-1)]a[fa]b
Sa'ÎT[ta'(i-1)]a[fa']b

, (3.6)

where ta(i) and fa are the trace at iteration i of edge a and its attractiveness, respectively. The trace at
iteration i of edge a is given by:

ta(i) = rta(i-1) + Dta, "a = (i, j)ÎT,

where

Dta = å
hÎH

ÊDth
aÊ,

Dth
aÊ = 

 îï
ïí
ï
ïì 1
Zh-Zlb

ifÊagentÊhÊeliminatesÊa,ÊandÊZhÊisÊtheÊsolutionÊvalueÊfoundÊbyÊh
0 otherwise.

The attractiveness factor is given by:

fa = dij
cj

"a = (i, j)ÎT.

This algorithm will be called Randomized Clustering.

Note that the computational complexity of the randomized versions of greedy and clustering
algorithms is unchanged with respect to the deterministic version, if we exclude the overhead due to
the computation of the traces and the probabilities.

Randomizing Beasley's algorithm
The algorithms obtained by applying the randomized scheme with the greedy and the clustering
heuristics will be labelled randomized-greedy and randomized-clustering, respectively.
These two algorithms can be applied in conjunction with Beasley's heuristic. The idea is the following:
at each iteration of Beasley's algorithm we have the reduced costs of the subsets in F. All the subsets
which have reduced cost less than or equal to -e (e>0) are put into the solution; the solution is
completed by applying randomized-greedy or randomized-clustering to the remaining subsets using
the reduced costs instead of the original costs. Obviously, this algorithm is much more time
consuming than Beasley's algorithm, as at each iteration several solutions are constructed. We will call
these algorithms B-randomized-greedy and B-randomized-clustering.



8

3.2 Heuristics obtained by perturbing the costs of the problem

The class of algorithms that we propose in this section, instead of randomizing the generation of
solutions, introduces a random perturbation into the cost of the problem instance under consideration.
The perturbation of the cost takes place by the same mechanism of the trace described in Section 3.1.
We have a trace associated with each subset. The traces are computed and updated according to (3.1),
(3.2) or (3.3). Once the traces have been updated, the costs of the problem are modified. At iteration i,
the probability of perturbing the cost cj of subset Ij is given by:

pj(i) = (1 - e-[tj(i-1)]a[fj]b), (3.7)

where fj is the usual attractiveness factor (3.5), and a and b are suitable parameters used to control
the influence of memory and attractiveness. The new cost value cj is given by a random number
uniformly generated in the interval [cj -d,cj ]. This implies that, the larger the trace of a subset is, the
higher the probability of decreasing its cost.
The scheme of the heuristic is the following:
procedure perturb;
begin

for each IjÎF do
tj(0):=t0; {trace initialization}

for i=1,É,niter do
begin

for each hÎH  do
begin

perturb_costs(c, t);
S:=heuristic(I, F, c);
if Z(S) < Z(best_solution) then best_solution:=S;
for each IjÎF do compute_trace (Dt

h
j (i),S) {using (3.2) or (3.3)}

end;
update_trace(tj(i)); {using (3.1)}

end;
return(best_solution)

end.

The function heuristic(I, F, c) computes a solution of the perturbed problem. To this aim, we can use
any reasonable heuristic. The procedure perturb_costs(c, t) modifies the problem instance by
decreasing the costs according to probabilities (3.7). We will denote by perturbed-greedy, perturbed-
clustering and perturbed-Beasley the heuristic obtained by applying the above scheme to greedy,
clustering and Beasley's algorithms.

4. Computational results

The algorithms have been tested on the set covering instances taken from OR-Library [5]. Before
applying the algorithms, the problems have been reduced according to the reduction rules proposed in
[3, 16]. For the considered test problems the reduction requires relatively little time; on the other hand,
the numerical results of the algorithms applied to the reduced problems are comparable with those of
the unreduced ones, while the computation time is much smaller. These results are reported in [15].



9

The considered test problems are of small-medium size: the number of elements m ranges from 300
to 400, while the number of subsets n ranges from 400 to 650. The density of non zero elements of
matrix A is 2-5%. All algorithms have been implemented in C language and run on a Digital Alpha
200-4/166.
In Table 1 we present a summary of the results obtained by applying the heuristics of the literature
described in Section 2. Column opt contains the optimal solution values, column G the results of the
greedy implemented with rule (2.2), column C the results of the clustering, column B the results of
Beasley's heuristic, and column GRASP the results of the GRASP. The clustering is implemented
deleting the edges maximizing dij/cj. The GRASP iterates 320 times in order to compare it with the
perturbed greedy and the randomized greedy whcih generate te same number of solutions. The results
of the Beasley's heuristic may sometimes be different from those reported in [4] due to different
settings of the subgradient algorithm used to solve the Lagrangean dual.

Problem opt . G C B GRASP
A.1 253 271 261 256 259
A.2 252 276 277 256 256
A.3 232 263 252 234 240
A.4 234 253 250 235 241
A.5 236 251 241 238 258
B.1 69 79 86 70 70
B.2 76 89 88 78 76
B.3 80 87 85 81 80
B.4 79 89 84 79 81
B.5 72 73 75 72 72
C.1 227 242 235 232 235
C.2 219 240 233 224 222
C.3 243 278 281 249 249
C.4 219 252 249 224 228
C.5 215 243 223 216 218

Table 1: value of the solutions obtained by the basic algorithms

In Table 2 we report the results of the randomized scheme where the randomization of the greedy, the
clustering and the B-randomized-greedy algorithms are used. We denote by RG, RC and RB the
column with these results. The randomized scheme is implemented with 32 agents and 10 iterations;
parameters a, b and r have been set to 1, 4 and 0.5, respectively and the initial trace tij(0) = 0.01.
These values have been chosen according to the indications given in [12] and after some preliminary
tests. To generate the trace we used (3.2) for RG, and RC while we used (3.3) for and RB, since in
this case we always have a lower bound.



10

Problem opt . RG R C RB
A.1 253 257 256 254
A.2 252 256 264 252
A.3 232 237 243 233
A.4 234 239 240 234
A.5 236 238 239 236
B.1 69 69 72 69
B.2 76 76 81 76
B.3 80 81 80 80
B.4 79 79 82 79
B.5 72 72 72 72
C.1 227 233 234 227
C.2 219 225 226 219
C.3 243 249 266 243
C.4 219 229 234 219
C.5 215 218 220 216

Table 2: value of the solutions obtained by the randomized and perturbed algorithms

In Table 3 we report the results of the randomized scheme where the greedy and Beasley's algorithm
are applied to the problem with perturbed costs. We denote by PG and PB the column with these
results. We do not report the results of perturbed-clustering as they do not improve significantly those
of clustering. The randomized scheme is implemented with 32 agents and 10 iterations; parameters a,
b and r have been set to 1.3, 3 and 0.5, respectively and the initial trace tij(0)Ê=0.01, as in the previous
case. We reported also the results obtained letting the GRASP run the same amount of time as PB
(column GRASP*)

Problem opt . PG PB GRASP*
A.1 253 263 254 257
A.2 252 269 256 256
A.3 232 243 232 235
A.4 234 241 234 240
A.5 236 242 236 238
B.1 69 72 69 70
B.2 76 82 76 76
B.3 80 84 81 80
B.4 79 84 79 80
B.5 72 73 72 72
C.1 227 240 229 234
C.2 219 232 220 221
C.3 243 263 245 247
C.4 219 233 219 226
C.5 215 222 215 218

Table 3: value of the solutions obtained by the perturbed algorithms

Table 4 reports the computational time in seconds of some heuristics applied to problem A.1, which is
one of the problems that requires more time.



11

G B GRASP RG RB PG PB
<0.01 1.40 2.40 13.72 807.88 1.42 245.15

Table 4: computational times of some heuristics applied to A.1
The best solution values are provided by RB and PB. These algorithms very often attain the optimum,
and in general are very near to it. However, it should be noted that these two algorithms generate a
larger number of solutions with respect to the other heuristics. In Figures 1 and 2 we compare the
heuristics derived from the greedy applied to problems of sets A and C, respectively. The GRASP is
almost always better than the others. Looking at the computational efficiency, we can note that
perturbed-greedy is ten time faster than RG. This is due to the fact that while the randomized version
has to compute the probabilities at each single step of greedy, the perturbed version computes the
probabilities only at the beginning of the greedy, when the costs are modified. Note also that PG and
GRASP generate the same number of solutions, but PG is faster.

210

220

230

240

250

260

270

280

A.
1

A.
2

A.
3

A.
4

A.
5

opt.

G

GRASP

RG

PG

Figure 1: comparison of the solutions values on instances set A

0

50

100

150

200

250

300

C.
1

C.
2

C.
3

C.
4

C.
5

opt.

G

GRASP

RG

PG

Figure 2: comparison of the solutions values on instances set C

In Figure 3 we compare the results of the heuristics based on Beasley's algorithm, as it is applied to
problems class A. The PB takes about one third of time as compared to RB, generating a smaller
number of solutions, however both algorithms are computationally very expensive.



12

220
225
230
235
240
245
250
255
260

A.1 A.2 A.3 A.4 A.5

opt.

B

RB

PB

Figure 3: comparison of the solutions values on instances set A

5. Parallel implementation of randomized heuristic scheme

The randomized scheme that we hve proposed has a natural and straightforward parallel
implementation. In fact, we can assign the duty of every agent to a different processor. Here we
discuss the parallel implementation of the randomized scheme.  We report also some results on the
performance of the most representative heuristics among those presented in the previous sections,
obtained on a CRAY T3D.

5.1 A synchronous implementation

Let us present a synchronous version of the algorithms implemented on a distributed computing
system without shared memory. We have a set of agents running in parallel. At iteration i of the
randomized scheme, each agent hÎH executes the following operations:

- generate the solution;
- compute the trace Dt

h
j (i) using (3.2) or (3.3);

- send Dt
h
j (i), j=1,É,n, to all other agents in H;

- receive Dt
k
j (i) from the other agents kÎH;

- update the trace using (3.1).

At the end of the generation of the solution, each agent broadcasts to all others the value of the trace
related to the solution it has obtained, and receives from all the other agents the value of their trace so
that it can compute the new trace value according to (3.1). This is the synchronization phase of the
algorithm. Note that the information about the trace is contained in each processor, and after the
synchronization phase is complete this information is consistent.
This implementation can be used for all heuristics, except RB. In fact, RB is more suitably
implemented by a master-slave scheme, as it requires the computation of the dual solution which is
global. The master executes iteratively the following tasks:



13

- compute the solution of the Lagrangean function and obtain the reduced costs;
- send the reduced costs to all the slaves (agents);
- receive the solution from all the agents hÎH;
- compute the best among the received solutions and update the multipliers u according to the

subgradient method.

Each slave hÎH executes the following operations:
- receive the reduced costs from the master;
- reduce the problem by putting in the solution the subsets with reduced cost £ -e;
- repeat K times:

- generate the solution for the reduced problem;
- compute the trace Dt

h
j (i) using (3.2) or (3.3);

- send Dt
h
j (i), j=1,É,n, to all the other agents in H;

- receive Dt
k
j (i) from the other agents kÎH;

- update the trace using (3.1);
- send the value of the solution to the master.

5.2 An asynchronous implementation

We identified two main problems derived from the proposed parallel implementations. The first one is
related to the synchronization phase. The presence of many relatively large messages circulating at the
same time in the communication network may generate congestion in the processing system. The
second one concerns the fact that the computation of the agents may take different periods of time,
thus leaving some processors idle waiting for the synchronization. To overcome these two problems, a
completely asynchronous algorithm is proposed.
The asynchronous algorithm is organized in a master-slave framework. The master has the following
duties:

- receive Dt
h
j , j=1,É,n, from agents;

- update the trace tj:= rtj + Dt
h
j , j=1,É,n;

- send the trace tj, j=1,É,n, to the agents that ask for it.

The slaves execute the following operations:
- ask for the trace tj, j=1,É,n, from the master;
- generate the solution;
- compute the trace Dt

h
j  using (3.2) or (3.3);

- send Dt
h
j , j=1,É,n, to the master.

Note that in this scheme, the agents are not obliged to execute the same number of iterations, and the
trace is not updated as in the sequential algorithm. This may produce different solutions with respect
to the sequential case.

5.3 Performance evaluation

As the trace is, actually, a global information, the algorithms could be equivalently implemented on a
parallel computer with shared memory. Thus instead of broadcasting the trace information during



14

each synchronization phase, we can exploit the Shared Memory Access library of CRAY MPP to
update the trace t and make it visible to all agents. The Shared Memory Access library efficiently
emulates a shared memory environment in a distributed parallel computer such as CRAY T3D. From
the preliminary experiments [14], parallel implementation utilizing the Shared Memory Access library
resulted slightly more efficient than the implementation using the inter processor communication
routines.
All the algorithms have been implemented in C language. Here we report some computational results
of the Shared Memory version of RG, PG and PB, and of the master slave implementation of RB.
Table 5 reports the computational times in seconds required by the execution of these algorithms on a
CRAY T3D when the number of used processors is increased up to 64. For each execution the
computation load is the same, that is, the constructive heuristic is called 320 times, and the number of
agents is equal to the number of processors. The main purpose of these computational experiments is
not the evaluation of the efficacy of the proposed algorithms, which has been already discussed in the
previous section, but to verify scalability; that is, how the computing time decreases when the number
of processors is increased. For this reason we do not report the numerical results of the solutions
found, even though in some cases of the asynchronous implementation they may differ from those
obtained with the sequential algorithm. The times have been obtained for test problem A.1.

n. proc. PB PG RB RG
1 97.7 4.8 411.3 12.4
2 59.1 2.5 489.3 6.3
4 30.5 1.3 354.8 3.2
8 16.2 0.7 171.6 1.7

16 8.8 0.4 99.58 1.0
32 5.1 0.2 78.18 0.7
64 3.1 0.1 64.43 0.7
Table 5: computing times (in sec.)

Note that PB, and RB generate more than 320 solutions since Beasley's heuristic is iterative: RB 320
solutions are generated at each iteration of the subgradient method, while in PB, the subgradient
method is called 320 times. This explains the fact that the times of PB and RB are greater than in the
other cases. In Figure 4 we compare the speed-up of the four algorithms, when the number of
processors is increased. The speed-up for a given number of processors (k) is given by the division of
computing time of the sequential algorithm by the computing time of the parallel algorithm using
kÊprocessors.



15

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
number of processors

sp
ee

d-
up

PB
PG
RG
RB

Figure 4: speed-ups

The speed-up of the class of perturbed algorithms is higher than for the class of randomized ones, and
has values which are quite interesting. For RB the synchronous implementation seems to be
particularly unsuitable; in this case, in fact, most of the time is spent in waiting for the
synchronization. This is due to the fact that the time required by each agent is highly dependent on the
input data, and the number of iterations for each agent is extremely variable. Thus, for this algorithm, a
less tightly coupled implementation would be more suitable.

We implemented also the asynchronous version of the PB, which is the more interesting algorithm in
the class of those proposed in this paper, and the one that could most benefit from possible
improvement. The problem is perturbed 320 times. The interprocessor communications use the PVM
routines. In Table 6 we report the computiation times, when the number of processors is increased:
beginning with a configuration of one master and three slaves. The times have been obtained for test
problem A.1.

n. proc. PB
4 24
8 13

16 9
32 5
64 3

Table 6: computing times (in sec.)

PB achieves a good scalability also in the asynchronous implementation. It can be pointed out that it
also has abetter performance with respect to the synchronous implementation when a small number of
processors is used.



16

6. Conclusions and future work

In this paper we have presented a general algorithmic scheme to generate randomized heuristics for
the set covering problem. Two classes of heuristics may be obtained. The scheme iteratively applies
either randomized versions of known constructive heuristics to the problem at hand, or the
deterministic versions of the heuristic to random instances obtained by suitably perturbing the costs of
the original problem. The randomization is in some way ÒadaptiveÓ as it considers a memory factor.
The computational results are encouraging: the solutions provided are often optimal or very close to
the optimum. The heuristics derived from the proposed scheme can be easily parallelized. We have
also presented a simple synchronous version of the algorithms, an asynchronous version of the most
promising algorithm, and some performance measures.
One drawback of the adaptive system is that it often generates a group of good solutions many times,
thus yielding some inefficiencies. Techniques that avoid or reduce the effect of these inefficiencies are
currently under study; the idea is to introduce a sort of set of tabu lists, one for each group of similar
subsets of F, so that the agents do not always select the same solutions. The tabu lists may be
different for each agent in order to differentiate their behavior.
Due to the general features of the proposed algorithmic scheme, all the proposed approaches and the
parallel implementations can be extended to other combinatorial optimization problems for which
efficient constructive algorithms exist. A similar approach has been applied in the field of flexible
passenger transportation in a urban environment [20].

References

[1] Balas E., S. Ceria, G. Cornu�jols (1996) Mixed 0-1 programming by lift-and-project in a
branch-and-cut framework, Management Sciences, 42(9), 1229-1246.

[2] Balas E., Ho A. (1980) Set covering algorithm using cutting planes, heuristics and subgradient
optimization: a computational study. Mathematical Programming, 12:37-60.

[3] Beasley J.E. (1987) An algorithm for set covering problems. European Journal of Operational
Research, 31:85-93.

[4] Beasley J.E. (1990) A lagrangian heuristic for set covering problems. Naval Research Logistics,
37:151-164.

[5] Beasley J.E. (1990) OR-Library: distributing test problems by electronic mail. Journal of the
Operational Research Society, 41:1069-1072.

[6] Beasley J.E., J¿rnsten K. (1992) Enhancing an algorithm for set covering problems. European
Journal of Operational Research, 58:293-300.

[7] Bertsimas D., Teo C.-P. (1994) From valid inequalities to heuristic: a unified view of primal-
dual approximation algorithms in covering problems, Working paper OR 294-94, MIT.



17

[8] Bertsimas D., Vohra R. (1994) Linear programming relaxations, approximation algorithms and
randomization; a unified view of covering problems, Working paper, MIT.

[9] Caprara A., M. Fischetti, P. Toth (1995), A Heuristic Method for the Set Covering Problem,
Proc. of the Fifth IPCO Conference, Lecture Notes on Computer Science Vol 1084, pp. 72-84.

[10] Ceria S., P. Nobili, A. Sassano (1997), Set Covering Problem, in Annotated bibliographies in
Combinatorial Optimization, Dell'Amico M., F. Maffioli, S. Martello eds, John Wiley & Sons -
Chichester.

[11] Chvatal V. (1979) A greedy heuristic for the set covering problem. Mathematics of Operations
Research, 4(3):233-235.

[12] Dorigo M., Maniezzo V., Colorni A. (1995) The Ant System: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, 25(12).

[13] Feo T.A., Resende M.G.C. (1989) A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67-71.

[14] Fiorenzo Catalano M.S., Malucelli F. (1995) Stochastic heuristics for the set covering.
Pesented at Giornate di Lavoro AIRO ' 95 Ancona - Settembre 1995.

[15] Fiorenzo Catalano M.S. (1995) Euristiche per il problema di copertura. Tesi di Laurea
Dipartimento di Informatica - Universit� di Pisa.

[16] Garfinkel R.S., Nemhauser G.L (1969) The set-partitioning problem: the set covering with
equality constraints. Operations Research, 17:848-856.

[17] Grossman, T., A. Wool (1997) Computational experience with approximation algorithms for the
set covering problem. European Journal of Operational Research, 101(1): 81-92.

[18] Kwatera R.K., Simeone B. (1993) Clustering heuristics for set covering. Annals of Operations
Research, 43:295-308.

[19] Lund C., Yannakakis M. (1992) On the hardness of approximating minimization problems,
33rd IEEE Symposium on Foundations of Computer Science.

[20] Malucelli F., M. Nonato and S. Pallottino (1999). Demand Adaptive Systems: some proposals
on flexible transit in Operational Research in Industry London, McMillan Press. 157-182.


