
Parallel Randomized Heuristics For The Set Covering Problem

MARIA STELLA FIORENZO CATALANO
Transportation and Traffic Engineering Section

Delft University of Technology
P.O. Box 5048 - 2600 GA Delft

THE NETHERLANDS
S.Catalano@CiTG.TUDelft.NL

FEDERICO MALUCELLI
DEI - Politecnico di Milano

Piazza L. da Vinci 32 - 20133 Milano
ITALY

malucell@elet.polimi.it http://www.elet.polimi.it/people/malucell

Abstract: - We propose a general scheme to derive heuristics for the Set Covering Problem. The scheme is
iterative and embeds constructive heuristics within a randomized procedure. A first group of heuristics is
obtained by randomizing the choices made at each step when the solution is constructed in a way similar
to that of the so called "Ant System"; a second group of more efficient heuristics is obtained by
introducing a random perturbation of the costs of the problem instance. Some computational results are
presented. Different parallel implementations are discussed and some performance measures reported.

Keywords: - heuristic algorithms, randomized methods, set covering, parallel algorithms

1. Introduction

The Set Covering Problem plays an important role in combinatorial optimization. Many important
applications can be formulated in terms of Set Covering, as for example crew scheduling, vehicle routing,
facility location, assembly line balancing, information retrieval [10].
Given a set I = {1, É, m} and a collection of proper subsets of I, F={I1, É, In}, a cover S Í F of I is such
that each element of I belongs at least to one of the subsets in S. If we associate a cost cj with each subset
Ij Î F , and we define the cost of a cover as the sum of the cost of its components, the Set Covering
Problem consists in finding minimum cost cover.
Due to the difficulty of determining the optimal solution (the problem is NP-hard), and due to the great
scale of real life problems, a many heuristic algorithms have been devised. Though it has been proved that
the existence of a polynomial algorithm approximating the optimal solution within 1/4 log m, implies
P=NP [20], in practice most of the literature heuristics very efficiently yield near optimal solutions [9].
In the present paper we propose a class of randomized heuristic algorithms. The scheme of the algorithms
is iterative. At each iteration a feasible solution is constructed; this is done by exploiting any constructive
heuristic of the literature. The construction of solutions considers not only the usual goodness criteria, but
also the ÒstoryÓ of previously produced solutions, following the ideas introduced in the so called "Ant
System" [12]. We will study the combination of this general scheme with some of the most efficient
classical heuristics. The class of Randomized algorithms (with or without memory) proved to give good
results when applied to the set covering in a large collection of test problems, as reported in [18].
In Section 2 we introduce the basic notation and we review some of the most efficient constructive
heuristic algorithms to be used within the new heuristics. Section 3 illustrates the randomized heuristic
scheme as well as some of the algorithms which can be obtained. Section 4 contains some computational
results. The randomized heuristic scheme is easy to parallelize. In Section 5 we discuss some parallel
implementations of the algorithms and we present the performance evaluation of selected heuristics.

2. Problem formulation and some classical heuristic algorithms

The Set Covering Problem can be formulated in terms of integer linear programming. A 0-1 m´n matrix
A is used to represent the collection of subsets F where coefficients aij are equal to 1 if and only if iÎIj,
and 0 otherwise. Decision variables xj, j = 1, É, n, are used to select the subsets in the cover, that is xj will
assume value 1 if and only if subset is in the cover S and 0 otherwise. Denoting by cj the cost of including
subset j in the solution, the problem is:

min å
j=1

n
Ê cj xj

A x ³ e, (1)
xj Î{0,1}, j=1,É,n,

where e denotes the unitary vector. Further on, we will denote the cost of a solution S by Z(S) = åjÎS cj.
The most efficient exact algorithms are based on Branch&Bound [3, 6] and Branch&Cut techniques [1].

2.1 Constructive heuristic algorithms
Now we present a short survey of some of the most efficient constructive heuristics of the literature.
These algorithms will be used within the general scheme of the randomized heuristic (see Section 3). For a
more detailed review see [14], and [10].
2.1.1 Greedy algorithms
Greedy algorithms are among the simplest and most efficient in terms of computational time. The basic
idea is to build a solution starting from S = ¯ and including in S, at each iteration, the ÒbestÓ of the
remaining subsets. There are several criteria to determine the best subset; these criteria characterize the
different greedy algorithms. The general scheme of greedy algorithm is the following:
procedure greedy;
begin

S:=¯;
while S does not cover I do
begin

select and remove Ij from F;
S:=SÈ{Ij};
reduce(F)

end
end.
Procedure reduce(F) eliminates from F those subsets dominated by subsets already selected in the solution.
The selection of the subset can be made according to the criterion proposed by Chv�tal [11]:

Ij = argmax {
|Ik|
ck

: IkÎF}. (2)

Other criteria ascribe different values to the numerator or to the denominator of (2), giving more strength
to the cardinality of the subset or to its cost. For a detailed discussion see [2].
The greedy scheme is used as a base for the Greedy Randomized Adaptive Search Procedure (GRASP) [13].
The GRASP executes several times the greedy; but at each iteration of the greedy, instead of selecting
deterministically the best subset, it picks up randomly one subset from the more promising ones
determined by use of the selection criterion (2).
2.1.2 Beasley's algorithm
The heuristic algorithm proposed by Beasley [4] usually provides solutions whose value is very close to
the optimum. It is a kind of Primal-Dual algorithm. The idea is to consider the Lagrangean dual of
problem (1), where constraints AxÊ³ e are relaxed. The problem is

max {j(u): u³0},
and the Lagrangean function is

min {å
j=1

n
Ê(cj - å

i=1

m
Êaij ui)xj: xjÎ{0,1}, j=1,É,n}.

The Lagrangean Dual is approached with a very simple and standard subgradient method where, at each
iteration, a tentative value for multipliers ui is fixed and the Lagrangean function j(u) is computed; then
the value of u is updated and the procedure iterates until some stopping conditions hold. At each iteration

of the subgradient algorithm, a dual solution u is at hand; dual variables u are used to compute the reduced
cost associated with every subset of F. The reduced cost of subset j is given by the following expression:

cj - å
i=1

m
Êaij ui.

A feasible cover is obtained by selecting all subsets with non positive reduced cost, and, if there are still
uncovered elements of I, the solution is completed by selecting the remaining subsets in a greedy fashion.
At the end, the algorithm makes the solution minimal, that is it eliminates from the solution possible
redundant subsets. Other Primal-Dual algorithms are studied theoretically in [7, 8], where a worst case
bound to the solution value is provided.

3. The randomized heuristic scheme

The general randomized heuristic scheme that we propose is inspired by the Ant System ([12]), which is
an adaptive metaheuristic that has been applied successfully to several combinatorial optimization
problems. The proposed scheme is iterative: at each iteration a (possibly new) solution is constructed. The
solutions are constructed according to a probability law. This probability law considers (i) the usual
attractiveness factors (as for example function (2) used in the greedy algorithm or in the GRASP), in
conjunction with (ii) a memory factor. The memory factor (called trace) takes into account the quality of
the solutions already produced, in such a way that the best encountered solutions increase the probability
that their elements are selected during the successive iterations. Note that this memory factor is not
present in the GRASP, or in other randomized algorithms, but it is a feature typical to Ant Systems.
Let us discuss in greater detail the memory factor mechanism. Each subset of F is characterized by a trace
value. This value is increased each time that the subset is included in a solution, and the trace increment is
proportional to the quality of the solution. In the algorithm, at each iteration, the trace is updated by a
set H of independent ÒagentsÓ, each of which constructs its own solution according to the given
probability law.
The trace at the end of iteration i is given by the sum of the trace present at iteration i-1 multiplied by a
persistency coefficient rÎ[0,1] and the traces produced by the agents in H during the i-th iteration. High
values of persistency r give a long term memory effect. Formally the trace tj(i) associated with subset Ij
at the end of the i-th iteration is given by:

tj(i) = rtj(i-1) + Dtj(i), (3)

where Dtj(i) is the sum of the traces Dt
h
j (i) related to subset Ij produced by each agent hÎH during the i-th

iteration, that is:

Dtj(i) = å
hÎH

ÊDt
h
j (i).

Let us recall that the trace has to take into account the quality of the produced solution (i.e. its cost). A
possible expression of the trace is:

Dt
h
j (i) =

 î
í
ì1/Zh(i) ifÊjÎSÊproducedÊbyÊagentÊhÊduringÊtheÊi-thÊiteration,
0 otherwise, (4)

where Zh(i) is the objective function value of the solution S produced by agent h during the i-th iteration.
If the value of a lower bound Zlb of the optimal solution is available, an alternative expression of the
trace is:

Dt
h
j (i) =

 î
í
ì1/(Zh(i)-Zlb) ifÊjÎSÊproducedÊbyÊagentÊhÊduringÊtheÊi-thÊiteration
0 otherwise (5)

We can describe two different algorithmic schemes. In the first, we ÒrandomizeÓ the heuristic which
constructs the solution at each iteration, while in the second we ÒrandomizeÓ the problem instance by
suitably perturbing the costs.

3.1 Heuristics obtained by randomizing the greedy
The function generate_solution(t,I,F,c) produces a feasible solution taking into account the costs as well as
the trace associated with the subsets. In summary, the scheme of the algorithm is the following:

procedure randomized;
begin

for each IjÎF do
tj(0):=0; {trace initialization}

for i=1,É,niter do
begin

for each hÎH do
begin

S:=generate_solution(t,I,F,c);
if Z(S) < Z(best_solution) then best_solution:=S;

for each IjÎF do compute_trace (Dt
h
j (i),S) {using (4) or (5)}

end;
update_trace(tj(i)) {using (3)}

end;
return(best_solution)

end.
This general scheme can be used to devise different heuristics depending on the implementation of the
function generate_solution(t,I,F,c). Obviously, as the function is called several times, in order to generate
the solutions, efficient heuristics are preferred. To this end, we will study Òrandomized" versions of the
greedy where decisions, instead of being deterministic, are taken according to a probability law which
considers both attractiveness and memory factors. Other constructive heuristics can equally be adapted to
this general scheme as for example clustering heuristics [19]. The results of the randoomized clustering are
reported in [16].
3.1.1 Randomizing the greedy
Let us consider the randomization of the greedy algorithm. At each iteration of the greedy the subset
entering the solution is selected according to a probability law. The probability of selecting subset Ij at
iteration i, is given by:

pj(i) =
[tj(i-1)]a[fj]b

Sj[tj(i-1)]a[fj]b, (6)

where fj denotes the attractiveness factor of subset j, and the summation in the denominator is over all
the subset not yet included in the partial solution. An example of this factor is:

fj =
|Ij|
cj

, j=1,É,n. (7)

The denominator of (6) normalizes the probability values in the interval [0,1]. Parameters a and b are
useful to control the influence of memory and attractiveness. High values of a induce the algorithm to
rapidly converge to a status in which the same solution is always generated. On the other hand, high values
of b make the behavior of the algorithm extremely random. For a discussion on the best values of a and b
see [12]. This algorithm will be called Randomized Greedy.
Note that the computational complexity of the randomized versions of greedy algorithm is unchanged
with respect to the deterministic version, if we exclude the overhead due to the computation of the traces
and the probabilities.
3.1.2 Randomizing Beasley's algorithm
The algorithms obtained by applying the randomized scheme with the greedy will be labelled randomized-
greedy. This algorithm can be applied in conjunction with Beasley's heuristic. The idea is the following: at
each iteration of Beasley's algorithm we have the reduced costs of the subsets in F. All the subsets which
have reduced cost less than or equal to -e (e>0) are put into the solution; the solution is completed by
applying randomized-greedy to the remaining subsets using the reduced costs instead of the original costs.
Obviously, this algorithm is much more time consuming than Beasley's algorithm, as at each iteration
several solutions are constructed. We will call these algorithms B-randomized-greedy.

3.2 Heuristics obtained by perturbing the costs of the problem
The class of algorithms that we propose in this section, instead of randomizing the generation of
solutions, introduces a random perturbation into the cost of the problem instance under consideration.
The perturbation of the cost takes place by the same mechanism of the trace described in Section 3.1. We
have a trace associated with each subset. The traces are computed and updated according to (3), (4) or (5).

Once the traces have been updated, the costs of the problem are modified. At iteration i, the probability
of perturbing the cost cj of subset Ij is given by:

pj(i) = (1 - e-[tj(i-1)]a[fj]b
), (8)

where fj is the usual attractiveness factor (7), and a and b are suitable parameters used to control the
influence of memory and attractiveness. The new cost value cj is given by a random number uniformly
generated in the interval [cj -d,cj]. This implies that, the larger the trace of a subset is, the higher the
probability of decreasing its cost.
The scheme of the heuristic is the following:
procedure perturb;
begin

for each IjÎF do
tj(0):=t0; {trace initialization}

for i=1,É,niter do
begin

for each hÎH do
begin

perturb_costs(c, t);
S:=heuristic(I, F, c);
if Z(S) < Z(best_solution) then best_solution:=S;

for each IjÎF do compute_trace (Dt
h
j (i),S) {using (4) or (5)}

end;
update_trace(tj(i)); {using (3)}

end;
return(best_solution)

end.
The function heuristic(I, F, c) computes a solution of the perturbed problem. To this aim, we can use any
reasonable heuristic. The procedure perturb_costs(c, t) modifies the problem instance by decreasing the
costs according to probabilities (11). We will denote by perturbed-greedy and perturbed-Beasley the
heuristic obtained by applying the above scheme to greedy and Beasley's algorithms.

4. Computational results

The algorithms have been tested on the set covering instances taken from OR-Library [5]. Before
applying the algorithms, the problems have been reduced according to the reduction rules proposed in [3,
17]. For the considered test problems the reduction requires relatively little time; on the other hand, the
numerical results of the algorithms applied to the reduced problems are comparable with those of the
unreduced ones, while the computation time is much smaller. These results are reported in [15]. The
considered test problems are of small-medium size: the number of elements m ranges from 300 to 400,
while the number of subsets n ranges from 400 to 650. The density of non zero elements of matrix A is 2-
5%. All algorithms have been implemented in C language and run on a Digital Alpha 200-4/166.
In Table 1 we present a summary of the results obtained by applying the heuristics of the literature
described in Section 2. Column opt contains the optimal solution values, column G the results of the
greedy implemented with rule (2), column B the results of Beasley's heuristic, and column GRASP the
results of the GRASP. The GRASP iterates 320 times in order to compare it with the perturbed greedy and
the randomized greedy whcih generate te same number of solutions. The results of the Beasley's heuristic
may sometimes be different from those reported in [4] due to different settings of the subgradient
algorithm used to solve the Lagrangean dual.
In Table 2 we report the results of the randomized scheme where the randomization of the greedy, and the
B-randomized-greedy algorithms are used (RG and RB), moreover we report the results of the randomized
scheme where the greedy and Beasley's algorithm are applied to the problem with perturbed costs (PG and
PB) The last column reports the results obtained letting the GRASP run the same amount of time as PB
(column GRASP*). The randomized scheme is implemented with 32 agents and 10 iterations; parameters
a, b and r have been set to 1, 4 and 0.5, respectively and the initial trace tij(0) = 0.01. These values have
been chosen according to the indications given in [12] and after some preliminary tests. To generate the
trace we used (4) for RG, while we used (5) for and RB, since in this case we always have a lower bound.

Problem opt. G B GRASP

A.1 253 271 256 259

A.2 252 276 256 256

A.3 232 263 234 240

A.4 234 253 235 241

A.5 236 251 238 258

B.1 69 79 70 70

B.2 76 89 78 76

B.3 80 87 81 80

B.4 79 89 79 81

B.5 72 73 72 72

C.1 227 242 232 235

C.2 219 240 224 222

C.3 243 278 249 249

C.4 219 252 224 228

C.5 215 243 216 218

Table 1: value of the solutions obtained by the basic algorithms
The randomized scheme is implemented with 32 agents and 10 iterations; parameters a, b and r have
been set to 1.3, 3 and 0.5, respectively and the initial trace tij(0)Ê=0.01, as in the previous case.

Problem opt. RG RB PG PB GRASP*

A.1 253 257 254 263 254 257

A.2 252 256 252 269 256 256

A.3 232 237 233 243 232 235

A.4 234 239 234 241 234 240

A.5 236 238 236 242 236 238

B.1 69 69 69 72 69 70

B.2 76 76 76 82 76 76

B.3 80 81 80 84 81 80

B.4 79 79 79 84 79 80

B.5 72 72 72 73 72 72

C.1 227 233 227 240 229 234

C.2 219 225 219 232 220 221

C.3 243 249 243 263 245 247

C.4 219 229 219 233 219 226

C.5 215 218 216 222 215 218

Table 2: value of the solutions obtained by the randomized and perturbed algorithms
Table 3 reports the computational time in seconds of some heuristics applied to problem A.1, which is
one of the problems that requires more time.

G B GRASP RG RB PG PB

<0.01 1.40 2.40 13.72 807.88 1.42 245.15
Table 3: computational times of some heuristics applied to A.1

The best solution values are provided by RB and PB. These algorithms very often attain the optimum, and
in general are very near to it. However, it should be noted that these two algorithms generate a larger
number of solutions with respect to the other heuristics. Looking at the computational efficiency, we can
note that perturbed-greedy is ten time faster than RG. This is due to the fact that while the randomized
version has to compute the probabilities at each single step of greedy, the perturbed version computes the

probabilities only at the beginning of the greedy, when the costs are modified. Note also that PG and
GRASP generate the same number of solutions, but PG is faster.

5. Parallel implementation of randomized heuristic scheme

The randomized scheme that we hve proposed has a natural and straightforward parallel implementation.
In fact, we can assign the duty of every agent to a different processor. Here we discuss the parallel
implementation of the randomized scheme. We report also some results on the performance of the most
representative heuristics among those presented in the previous sections, obtained on a CRAY T3D.

5.1 A synchronous implementation
Let us present a synchronous version of the algorithms implemented on a distributed computing system
without shared memory. We have a set of agents running in parallel. At iteration i of the randomized
scheme, each agent hÎH executes the following operations:

- generate the solution;

- compute the trace Dt
h
j (i) using (4) or (5);

- send Dt
h
j (i), j=1,É,n, to all other agents in H;

- receive Dt
k
j (i) from the other agents kÎH;

- update the trace using (3).
At the end of the generation of the solution, each agent broadcasts to all others the value of the trace
related to the solution it has obtained, and receives from all the other agents the value of their trace so
that it can compute the new trace value according to (3). This is the synchronization phase of the
algorithm. Note that the information about the trace is contained in each processor, and after the
synchronization phase is complete this information is consistent.
This implementation can be used for all heuristics, except RB. In fact, RB is more suitably implemented
by a master-slave scheme, as it requires the computation of the dual solution which is global. The master
executes iteratively the following tasks:

- compute the solution of the Lagrangean function and obtain the reduced costs;
- send the reduced costs to all the slaves (agents);
- receive the solution from all the agents hÎH;
- compute the best among the received solutions and update the multipliers u according to the subgradient

method.
Each slave hÎH executes the following operations:

- receive the reduced costs from the master;
- reduce the problem by putting in the solution the subsets with reduced cost £ -e;
- repeat K times:

- generate the solution for the reduced problem;

- compute the trace Dt
h
j (i) using (4) or (5);

- send Dt
h
j (i), j=1,É,n, to all the other agents in H;

- receive Dt
k
j (i) from the other agents kÎH;

- update the trace using (3);
- send the value of the solution to the master.

5.2 An asynchronous implementation
We identified two main problems derived from the proposed parallel implementations. The first one is
related to the synchronization phase. The presence of many relatively large messages circulating at the
same time in the communication network may generate congestion in the processing system. The second
one concerns the fact that the computation of the agents may take different periods of time, thus leaving
some processors idle waiting for the synchronization. To overcome these two problems, a completely
asynchronous algorithm is proposed.
The asynchronous algorithm is organized in a master-slave framework. The master has the following
duties:

- receive Dt
h
j , j=1,É,n, from agents;

- update the trace tj:= rtj + Dt
h
j , j=1,É,n;

- send the trace tj, j=1,É,n, to the agents that ask for it.
The slaves execute the following operations:

- ask for the trace tj, j=1,É,n, from the master;
- generate the solution;

- compute the trace Dt
h
j using (6) or (7);

- send Dt
h
j , j=1,É,n, to the master.

Note that in this scheme, the agents are not obliged to execute the same number of iterations, and the
trace is not updated as in the sequential algorithm. This may produce different solutions with respect to
the sequential case.

5.3 Performance evaluation
As the trace is, actually, a global information, the algorithms could be equivalently implemented on a
parallel computer with shared memory. Thus instead of broadcasting the trace information during each
synchronization phase, we can exploit the Shared Memory Access library of CRAY MPP to update the
trace t and make it visible to all agents. The Shared Memory Access library efficiently emulates a shared
memory environment in a distributed parallel computer such as CRAY T3D. From the preliminary
experiments [15], parallel implementation utilizing the Shared Memory Access library resulted slightly
more efficient than the implementation using the inter processor communication routines.
All the algorithms have been implemented in C language. Here we report some computational results of
the Shared Memory version of RG, PG and PB, and of the master slave implementation of RB. Table 4
reports the computational times in seconds required by the execution of these algorithms on a CRAY T3D
when the number of used processors is increased up to 64. For each execution the computation load is the
same, that is, the constructive heuristic is called 320 times, and the number of agents is equal to the
number of processors. The main purpose of these computational experiments is not the evaluation of the
efficacy of the proposed algorithms, which has been already discussed in the previous section, but to verify
scalability; that is, how the computing time decreases when the number of processors is increased. For this
reason we do not report the numerical results of the solutions found, even though in some cases of the
asynchronous implementation they may differ from those obtained with the sequential algorithm. The
times have been obtained for test problem A.1.

n. proc. PB PG RB RG
1 97.7 4.8 411.3 12.4
2 59.1 2.5 489.3 6.3
4 30.5 1.3 354.8 3.2
8 16.2 0.7 171.6 1.7

16 8.8 0.4 99.58 1.0
32 5.1 0.2 78.18 0.7
64 3.1 0.1 64.43 0.7

Table 4: computing times (in sec.)
Note that PB, and RB generate more than 320 solutions since Beasley's heuristic is iterative: RB 320
solutions are generated at each iteration of the subgradient method, while in PB, the subgradient method is
called 320 times. This explains the fact that the times of PB and RB are greater than in the other cases.
In Figure 1 we compare the speed-up of the four algorithms, when the number of processors is increased.

The speed-up for a given number of processors (k) is given by the division of computing time of the
sequential algorithm by the computing time of the parallel algorithm using kÊprocessors.The speed-up of
the class of perturbed algorithms is higher than for the class of randomized ones, and has values which are
quite interesting. For RB the synchronous implementation seems to be particularly unsuitable; in this case,
in fact, most of the time is spent in waiting for the synchronization. This is due to the fact that the time
required by each agent is highly dependent on the input data, and the number of iterations for each agent

is extremely variable. Thus, for this algorithm, a less tightly coupled implementation would be more
suitable.

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
number of processors

sp
ee

d-
up

PB
PG
RG
RB

Figure 1: speed-ups
The speed-up of the class of perturbed algorithms is higher than for the class of randomized ones, and has
values which are quite interesting. For RB the synchronous implementation seems to be particularly
unsuitable; in this case, in fact, most of the time is spent in waiting for the synchronization. This is due to
the fact that the time required by each agent is highly dependent on the input data, and the number of
iterations for each agent is extremely variable. Thus, for this algorithm, a less tightly coupled
implementation would be more suitable.

We implemented also the asynchronous version of the PB, which is the more interesting algorithm in the
class of those proposed in this paper, and the one that could most benefit from possible improvement.
The problem is perturbed 320 times. The interprocessor communications use the PVM routines. In Table
6 we report the computiation times, when the number of processors is increased: beginning with a
configuration of one master and three slaves. The times have been obtained for test problem A.1.

n. proc. PB
4 24
8 13

16 9
32 5
64 3

Table 6: computing times (in sec.)
PB achieves a good scalability also in the asynchronous implementation. It can be pointed out that it also
has abetter performance with respect to the synchronous implementation when a small number of
processors is used.

6. Conclusions and future work

In this paper we presented two classes of randomized heuristics for the set covering problem. The method,
illustrated in detail in [16], iteratively applies either randomized versions of known constructive heuristics
to the problem at hand, or the deterministic versions of the heuristic to random instances obtained by
suitably perturbing the costs of the original problem. The randomization is in some way ÒadaptiveÓ as it
considers a memory factor. The computational results are encouraging: the solutions provided are often
optimal or very close to the optimum. The heuristics derived from the proposed scheme can be easily
parallelized. We have also presented a simple synchronous version of the algorithms, an asynchronous
version of the most promising algorithm, and some performance measures. Due to the general features of
the proposed algorithmic scheme, all the proposed approaches and the parallel implementations can be
extended to other combinatorial optimization problems for which efficient constructive algorithms exist.

A similar approach has been applied in the field of flexible passenger transportation in a urban
environment [21].

References:
[1] Balas E., S. Ceria, G. Cornu�jols, Mixed 0-1 programming by lift-and-project in a branch-and-cut

framework, Management Sciences, Vol. 42, No. 9, 1996, pp. 1229-1246.
[2] Balas E., Ho A., Set covering algorithm using cutting planes, heuristics and subgradient optimization:

a computational study. Mathematical Programming, Vol. 12, 1980, pp. 37-60.
[3] Beasley J.E., An algorithm for set covering problems. European Journal of Operational Research,

Vol. 31, 1987, pp. 85-93.
[4] Beasley J.E., A lagrangian heuristic for set covering problems. Naval Research Logistics, Vol. 37,

1990, pp. 151-164.
[5] Beasley J.E., OR-Library: distributing test problems by electronic mail. Journal of the Operational

Research Society, Vol. 41, 1990, pp. 1069-1072.
[6] Beasley J.E., J¿rnsten K. (1992) Enhancing an algorithm for set covering problems. European

Journal of Operational Research, Vol. 58, 1992, pp. 293-300.
[7] Bertsimas D., Teo C.-P., From valid inequalities to heuristic: a unified view of primal-dual

approximation algorithms in covering problems, Working paper OR 294-94, MIT, 1994.
[8] Bertsimas D., Vohra R., Linear programming relaxations, approximation algorithms and

randomization; a unified view of covering problems, Working paper, MIT, 1994.
[9] Caprara A., M. Fischetti, P. Toth (1995), A Heuristic Method for the Set Covering Problem, Proc.

of the Fifth IPCO Conference, Lecture Notes on Computer Science Vol 1084, pp. 72-84.
[10] Ceria S., P. Nobili, A. Sassano, Set Covering Problem, in Annotated bibliographies in Combinatorial

Optimization, Dell'Amico M., F. Maffioli, S. Martello eds, John Wiley & Sons - Chichester, 1997,
pp. 415-428.

[11] Chvatal V., A greedy heuristic for the set covering problem. Mathematics of Operations Research,
Vol. 4, No. 3, (1979), pp. 233-235.

[12] Dorigo M., Maniezzo V., Colorni A., The Ant System: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25 No. 12, 1996, pp. 29-41.

[13] Feo T.A., Resende M.G.C., A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, Vol. 8, 1989, pp. 67-71.

[14] Fiorenzo Catalano M.S. (1995) Euristiche per il problema di copertura. Tesi di Laurea Dipartimento
di Informatica - Universit� di Pisa.

[15] Fiorenzo Catalano M.S., Malucelli F. (1995) Stochastic heuristics for the set covering. Pesented at
Giornate di Lavoro AIRO ' 95 Ancona - Settembre 1995.

[16] Fiorenzo Catalano M.S., Malucelli F., Randomized heuristic schemes for the set covering problem,
DEI - Politecnico di Milano, working paper 2000.
(http://www.elet.polimi.it/Users/DEI/Sections/Automation/Federico.Malucelli/papers/stella.pdf).

[17] Garfinkel R. S., Nemhauser G. L., The set-partitioning problem: the set covering with equality
constraints. Operations Research, Vol. 17, 1969, pp. 848-856.

[18] Grossman, T., A. Wool, Computational experience with approximation algorithms for the set
covering problem. European Journal of Operational Research, Vol. 101, No. 1, 1997, pp.81-92.

[19] Kwatera R.K., Simeone B., Clustering heuristics for set covering. Annals of Operations Research,
Vol. 43, 1993, pp. 295-308.

[20] Lund C., Yannakakis M., On the hardness of approximating minimization problems, 33rd IEEE
Symposium on Foundations of Computer Science, 1992.

[21] Malucelli F., M. Nonato and S. Pallottino, Demand Adaptive Systems: some proposals on flexible
transit in Operational Research in Industry London, McMillan Press, 1999, pp. 157-182.

