A non linear multicommodity network design approach to solve a location-allocation problem in freight transportation

- A. Cavallet
- F. Malucelli
- R. Wolfler Calvo

Politecnico di Milano – Italy

Problem and data have been kindly provided by **DANZAS**

- activated international terminals
- --- international lines
- internal collection/distribution

PROBLEM DEFINITION

The company is reorganizing the international transportation:

- which terminals have to be closed and where to open new terminals
- size of the terminals
- assign international lines to terminals
- assign local customers to terminals
- evaluate the introduction of inter-terminal lines

COST ANALYSIS

collection/distribution carried out by third parties \Rightarrow the costs are linear in the transported volume

international transportation carried out by DANZAS ⇒ concave costs (economies of scale) different shapes depending on the lengths

internal flow in terminals ⇒ concave costs

International transportation costs

FLOW MODEL

FLOW MODEL

commodities jk (domestic origin j, international destination k)

 d_{jk} = volume of goods to be transported from j to k

FLOW MODEL

 $\begin{array}{ll} \text{min} & \sum_{j} \sum_{h} f_{c}^{jh} (\sum_{k} x_{jh}^{jk}) + \sum_{h} f_{m}^{h} (\sum_{jk} x_{hh'}^{jk}, z_{h}) + \sum_{k} \sum_{h} f_{i}^{hk} (\sum_{j} x_{h'k}^{jk}) \\ & E_{jk}^{jk} x_{jk}^{jk} = \delta^{jk} & \text{for each commodity jk [flow conservation]} \\ & x_{hh'}^{jk} \leq u_{h}^{jk} z_{h} & \text{for each commodity jk and terminal h} \\ & \text{[design]} \end{array}$

 E^{jk} is the node/arc incidence matrix related to commodity jk δ^{jk} is the demand vector u_h is an upper bound of the flow passing by terminal h

LINEARIZATION OF SEPARABLE COST FUNCTIONS

"ASSIGNMENT" MODEL

In the previous model the flow of one commodity can split between two or more terminals (even though it is not convenient).

 $x_{jhk} = \begin{cases} 1 & \text{commodity jk is assigned to terminal h} \\ 0 & \text{otherwise.} \end{cases}$

the flow collected by h from customer j is given by: $\sum_{k} d_{jk} x_{jhk}$

the flow inside terminal h is given by: $\sum_{\substack{jk \\ jk}} d_{jk} x_{jhk}$ the flow on international line hk is given by $\sum_{\substack{j \\ j}} d_{jk} x_{jhk}$

"ASSIGNMENT" MODEL

$$\begin{array}{ll} \text{min} & \sum\limits_{j} \sum\limits_{h} f_{c}^{jh} (\sum\limits_{k} d_{jk} x_{jhk}) + \sum\limits_{h} f_{m}^{h} (\sum\limits_{jk} d_{jk} x_{jhk}, z_{h}) \\ & \quad + \sum\limits_{k} \sum\limits_{h} f_{i}^{hk} (\sum\limits_{j} d_{jk} x_{jhk}) \\ \sum\limits_{h} x_{jhk} = 1 \quad \text{for each commodity jk} \\ & \quad x_{jhk} \leq z_{h} \qquad \text{for each commodity jk, for each terminal h} \\ & \quad x_{jhk}, \ z_{h} \in \{0,1\} \end{array}$$

"ASSIGNMENT" MODEL

Inter-terminal flows

 $x_{jhrk} = \begin{cases} 1 & commodity jk uses terminals h and r in the order \\ 0 & otherwise. \end{cases}$

the constraints are modified accordingly

LINEARIZATION OF SEPARABLE COST FUNCTIONS (2) b_3 b2 b₁ b a a₁ a2 a3 $f(x) = b_0 + \frac{b_1 - b_0}{a_1 - a_0} y_1 + \dots + \frac{b_k - b_{k-1}}{a_k - a_{k-1}}$ $x=a_0 + y_1 + ... + y_k$

VALID INEQUALITIES

let S be a subset of commodities and h a terminal such that $\sum_{jk\in S} d_{jk} > a_l^h$

if all the commodities in S are routed through terminal h $\Rightarrow z_1^h = 1$

$$\sum_{jk\in S} x_{jhk} - |S| + 1 \le z_1^h$$

separable by solving small knapsack problems

COMPUTATIONAL RESULTS

4 instances derived from real data provided by DANZAS

domestic areas / terminals / international destinations

	"assignment" model		"flow" model		
	# var.	# constr.	# var.	# constr.	
3 / 2 / 2	37	110	26	21	
6 / 4 / 5	206	241	624	540	
15 / 10 / 10	1930	2214	2036	920	
60 / 9 / 10	1930	2190	1084	734	

COMPUTATIONAL RESULTS

	"assignment" model			"flow" model	
	LP	LP+VI	ILP	LP	ILP
3 / 2 / 2	177781	209239	209239	172265	209239
3 / 2 / 2 / IT	177781	209239	209239	172265	209239
6 / 4 / 5	145788	156479	158268	114608	158268
6 / 4 / 5 / IT	122955	137777	158268	114608	158268
15 / 10 / 10	5755093	5805112	6255961*	5487518	6249885*
15 / 10 / 10 / IT	5497962	5542283	6045015*	5243240	6081742*
60 / 9 / 10	1218631	1231530	1408750	1093086	1408750
60 / 9 / 10 / IT	1218631	1231485	1408750	1093086	1408750

ILP solved with CPLEX 6.6 *best integer after 1000 seconds (about 1-3% from optimum)

COMPUTATIONAL RESULTS

	"assignme	nt" model	"flow" model	
	LP	LP+VI	LP	
3 / 2 / 2	15.0%	0.0%	17.7%	
3 / 2 / 2 / IT	15.0%	0.0%	17.7%	
6 / 4 / 5	7.9%	1.1%	27.6%	
6 / 4 / 5 / IT	22.3%	12.9%	27.6%	
15 / 10 / 10	8.0%	7.2%	12.2%	
15 / 10 / 10 / IT	9.0%	8.3%	13.8%	
60 / 9 / 10	13.5%	12.6%	22.4%	
60 / 9 / 10 / IT	13.5%	12.6%	22.4%	

Comparison with the best solution obtained with 9 open terminals

	optimal solution	9 terminals	gap
60 / 9 / 10	1408750	1572002	11.6%

COMPUTATIONAL TIMES

	"assignment" model			"flow" model	
	LP	LP+VI	ILP	LP	ILP
3 / 2 / 2	0.01	0.01	0.00	0.01	0.01
3 / 2 / 2 / IT	0.01	0.01	0.01	0.01	0.02
6 / 4 / 5	0.04	0.25	0.37	0.04	0.11
6 / 4 / 5 / IT	0.37	0.06	0.84	0.16	0.42
15 / 10 / 10	0.99	4.56	1000.00	0.36	1000.00
15 / 10 / 10 / IT	68.28	9.94	1000.00	8.05	1000.00
60 / 9 / 10	2.17	11.27	582.00	0.68	8.97
60 / 9 / 10 / IT	60.10	41.06	1968.00	16.12	424.00