A non linear multicommodity network design approach to solve a location-allocation problem in freight transportation
A. Cavallet
F. Malucelli

Politecnico di Milano - Italy
R. Wolfler Calvo

Problem and data have been kindly provided by DANZAS

- activated international terminals
- - - international lines
__ internal collection/distribution

PROBLEM DEFINITION

The company is reorganizing the international transportation:

- which terminals have to be closed and where to open new terminals
- size of the terminals
- assign international lines to terminals
- assign local customers to terminals
- evaluate the introduction of inter-terminal lines

COST ANALYSIS

collection/distribution carried out by third parties

\Rightarrow the costs are linear in the transported volume
international transportation carried out by DANZAS
\Rightarrow concave costs (economies of scale) different shapes depending on the lengths
internal flow in terminals
\Rightarrow concave costs

International transportation costs

FLOW MODEL

FLOW MODEL

FLOW MODEL

commodities jk (domestic origin j, international destination k)
$d_{j k}=$ volume of goods to be transported from j to k
= amount of flow of commodity jk going to terminal h
= amount of flow of commodity jk inside terminal h
$x_{h^{\prime} k}^{j k}=$ amount of flow of commodity $j k$ going to destination k from terminal h
$z_{h}=1$ if terminal h is activated, 0 otherwise

FLOW MODEL

$\min \sum_{j} \sum_{h} f_{c}^{j h}\left(\sum_{k} x_{j h}^{j k}\right)+\sum_{h} f_{m}^{h}\left(\sum_{j k} x_{h h^{\prime}, z_{h}}^{j k}\right)+\sum_{k} \sum_{h} f_{i}^{h k}\left(\sum_{j} x_{h^{\prime} k}^{j k}\right)$ $E^{\mathbf{j k}} \boldsymbol{x}^{\mathbf{j k}}=\delta^{\mathbf{j k}} \quad$ for each commodity $\mathbf{j k}$ [flow conservation]
$x_{h h^{\prime}}^{j k} \leq u_{h} z_{h}$
for each commodity jk and terminal h
$E^{j k}$ is the node/arc incidence matrix related to commodity $j k$ $\delta^{j k}$ is the demand vector
u_{h} is an upper bound of the flow passing by terminal h

LINEARIZATION OF SEPARABLE COST FUNCTIONS

$x=\sum_{l=0}^{k} a_{l} \xi_{l}: \quad f(x)=\sum_{l=0}^{k} b_{l} \xi_{l} ; \quad \sum_{l=0}^{k} \xi_{l}=1 ; \quad \sum_{l=0}^{k-1} \eta_{l}=1 ;$
$\sum_{j=0}^{1} \eta_{j} \geq \sum_{j=/+1}^{k} \xi_{j} \geq \sum_{j=/+1}^{k} \eta_{j} \quad$ for $1 \leq I \leq k-2$
$0 \leq \xi_{0} \leq \eta_{0}: \quad 0 \leq \xi_{k} \leq \eta_{k-1}: \quad \eta_{l} \in\{0,1\}$ for $l=1, \ldots, k-1$
x is a convex combination of two consecutive interval endpoints
formulation "locally ideal" [Padberg]

"ASSIGNMENT" MODEL

In the previous model the flow of one commodity can split between two or more terminals (even though it is not convenient).
$x_{j h k}= \begin{cases}1 & \text { commodity } j k \text { is assigned to terminal } h \\ 0 & \text { otherwise } .\end{cases}$
the flow collected by h from customer j is given by: $\sum_{k} d_{j k} x_{j h k}$
the flow inside terminal h is given by:
$\sum_{j k} d_{j k} x_{j h k}$
the flow on international line hk is given by

$$
\sum_{j} d_{j k} x_{j h k}
$$

"ASSIGNMENT" MODEL

$$
\begin{aligned}
\min & \sum_{j} \sum_{h} f_{c}^{j h}\left(\sum_{k} d_{j k} x_{j h k}\right)+\sum_{h} f_{m}^{h}\left(\sum_{j k} d_{j k} x_{j h k}, z_{h}\right) \\
& +\sum_{k} \sum_{h} f_{i}^{h k}\left(\sum_{j} d_{j k} x_{j h k}\right)
\end{aligned}
$$

$$
\sum_{h} x_{j h k}=1 \quad \text { for each commodity } j k
$$

$$
x_{j h k} \leq z_{h} \quad \text { for each commodity } j k \text {, for each terminal } h
$$

$$
x_{j h k}, z_{h} \in\{0,1\}
$$

"ASSIGNMENT" MODEL

Inter-terminal flows
$x_{j h r k}= \begin{cases}1 & \text { commodity } j k \text { uses terminals } h \text { and } r \text { in the order } \\ 0 & \text { otherwise } .\end{cases}$
the constraints are modified accordingly

LINEARIZATION OF SEPARABLE COST FUNCTIONS (2)
$x=a_{0}+y_{1}+\ldots+y_{k}$
$f(x)=b_{0}+\frac{b_{1}-b_{0}}{a_{1}-a_{0}} y_{1}+\ldots+\frac{b_{k}-b_{k-1}}{a_{k}-a_{k-1}} y_{k}$
$0 \leq y_{1} \leq a_{1}-a_{l-1}$
$y_{l} \geq\left(a_{l}-a_{l-1}\right) z^{\prime}, \quad y_{l+1} \leq\left(a_{l+1}-a_{11}\right) z^{\prime}$, for $l=1, \ldots, k-1$

Also this formulation is "locally ideal" [Padberg]

VALID INEQUALITIES

let S be a subset of commodities and h a terminal such that

$$
\sum_{j k \in S} d_{j k}>a_{l}^{h}
$$

if all the commodities in S are routed through terminal h

$$
\Rightarrow z_{1}^{h}=1
$$

$$
\sum_{j k \in S} x_{j h k}-|S|+1 \leq z_{l}^{h}
$$

separable by solving small knapsack problems

COMPUTATIONAL RESULTS

4 instances derived from real data provided by DANZAS
domestic areas / terminals / international destinations

	"assignment" model		"flow" model	
	\# var.	\# constr.	\# var.	\# constr.
$3 / 2 / 2$	37	110	26	21
$6 / 4 / 5$	206	241	624	540
$15 / 10 / 10$	1930	2214	2036	920
$60 / 9 / 10$	1930	2190	1084	734

COMPUTATIONAL RESULTS

	"assignment" model			"flow" model	
	LP	LP+VI	ILP	LP	ILP
$3 / 2 / 2$	177781	209239	209239	172265	209239
$3 / 2 / 2 /$ IT	177781	209239	209239	172265	209239
$6 / 4 / 5$	145788	156479	158268	114608	158268
$6 / 4 / 5 /$ IT	122955	137777	158268	114608	158268
$15 / 10 / 10$	5755093	5805112	6255961^{*}	5487518	6249885^{*}
$15 / 10 / 10 /$ IT	5497962	5542283	6045015^{\star}	5243240	6081742^{*}
$60 / 9 / 10$	1218631	1231530	1408750	1093086	1408750
$60 / 9 / 10 /$ IT	1218631	1231485	1408750	1093086	1408750

ILP solved with CPLEX 6.6
*best integer after 1000 seconds (about 1-3\% from optimum)

COMPUTATIONAL RESULTS

	"assignment" model		"flow" model
	LP +VI	LP	
$3 / 2 / 2$	15.0%	0.0%	17.7%
$3 / 2 / 2 /$ IT	15.0%	0.0%	17.7%
$6 / 4 / 5$	7.9%	1.1%	27.6%
$6 / 4 / 5 /$ IT	22.3%	12.9%	27.6%
$15 / 10 / 10$	8.0%	7.2%	12.2%
$15 / 10 / 10 /$ IT	9.0%	8.3%	13.8%
$60 / 9 / 10$	13.5%	12.6%	22.4%
$60 / 9 / 10 /$ IT	13.5%	12.6%	22.4%

Comparison with the best solution obtained with 9 open terminals

	optimal solution	9 terminals	gap
$60 / 9 / 10$	1408750	1572002	11.6%

COMPUTATIONAL TIMES

	"assignment" model			"flow" model	
	LP	LP+VI	ILP	LP	ILP
$3 / 2 / 2$	0.01	0.01	0.00	0.01	0.01
$3 / 2 / 2 /$ IT	0.01	0.01	0.01	0.01	0.02
$6 / 4 / 5$	0.04	0.25	0.37	0.04	0.11
$6 / 4 / 5 /$ IT	0.37	0.06	0.84	0.16	0.42
$15 / 10 / 10$	0.99	4.56	1000.00	0.36	1000.00
$15 / 10 / 10 /$ IT	68.28	9.94	1000.00	8.05	1000.00
$60 / 9 / 10$	2.17	11.27	582.00	0.68	8.97
$60 / 9 / 10 /$ IT	60.10	41.06	1968.00	16.12	424.00

