Planning maximum capacity Wireless Local Area Networks

Edoardo Amaldi
Sandro Bosio
Antonio Capone
Matteo Cesana
Federico Malucelli
Di Yuan
http://www.elet.polimi.it/upload/malucell

Outline

- Application
- 3 combinatorial optimization problems
- Complexity issues
- Hyperbolic formulations and solution approaches
- Quadratic formulations and solution approaches
- Linearization and model strenghthening
- Preliminary computational results
- Concluding remarks

Wireless Local Area Networks (WLANs)

(Cabled) Local Area Networks

- Dramatic size increase
- Difficult cable management
- Cannot cope with users' mobility
\Rightarrow Introduction of wireless connections

Wireless Local Area Networks (WLANs)

Users connected to the network via antennas (access points, hot spots)
WLANs allow: to substitute cables in offices and departments (easier and more flexible management)
to provide network services in public areas (airports, business districts, hospitals, etc.)
at very low cost

WLAN planning

$J=\{1, \ldots, n\}$ candidate sites where antennas can be installed
$I=\{1, \ldots, m\}$ "test points" (TPs) or possible users positions
For each $j \in J$:
$I_{j} \subseteq I$ subset of test points covered by antenna j
Goal: select a subset of candidate sites $S \subseteq J$
with covering constraints:
each test point must be covered by at least one antenna
without covering constraints:
a test point is not necessarily covered

Transmission protocol: a user can "talk" if all interfering users are "silent"
"Talking probability" = 1/(\# of the interfering users)

Network capacity = sum of the "talking probabilities" of all users

Objective functions
For any $S \subseteq J$, let $I(S)$ denote the subset of users covered by S

- Network capacity

$$
c(S)=\sum_{i \in I(S)} \frac{1}{\mid \cup_{j \in S: i \in I_{j} I_{j} \mid}}
$$

- Network fairness

$$
f(S)=\min _{i \in I} \frac{1}{\left|\cup_{j \in S: i \in I_{j}} I_{j}\right|}
$$

Intuitively solutions with small non-overlapping subsets should be privileged

Combinatorial Optimization problems

Maximum capacity unconstrained WLAN
$P:\{\max c(S): S \subseteq J\}$

Maximum capacity covering WLAN

$$
P C:\left\{\max c(S): S \subseteq J, \cup_{j \in S} I_{j}=I\right\}
$$

Maximum fairness WLAN

$$
P F:\{\max f(S): S \subseteq J\}
$$

PF implies full coverage, since any solution covering all users dominates those not covering some users (which have fairness $=0$)

Example: third floor of our department

Candidate sites

Test points uniformly distributed

Minimum cardinality set covering

Practitioner solution (dense)

Practitioner solution (sparse)

Maximum capacity solution (PC)

Numerical results

	\# Access Points	Capacity	Efficiency
Min. card. Set Covering	3	1.913	0.638
Practitioner dense	20	2.448	0.122
Practitioner sparse	10	2.582	0.258
Maximum capacity	7	5.649	0.807

Efficiency = Capacity/(\# Access Points)

Computational complexity

Proposition: P, PC, and PF are NP-hard

Reduction

Exact Cover by 3-sets:
Given a set $X \quad(|X|=3 q)$ and a collection \mathcal{C} of $n 3$-element subsets C_{j}, $j=1, \ldots, n$, of X, does \mathcal{C} contain an exact cover of X, i.e., $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ s.t. every element of X occurs in exactly one element of \mathcal{C} ?

$$
I=X, \quad J=\{1, \ldots, n\}, \quad\left\{I_{1}, \ldots, I_{n}\right\}=\mathcal{C}, \quad S\left\{j: C_{j} \in \mathcal{C}^{\prime}\right\}
$$

$P(P C)$ has a solution S with $c(S)=q$ iff \mathcal{C}^{\prime} is an exact cover

PF has a solution S with $f(S)=1$ iff \mathcal{C}^{\prime} is an exact cover

Mathematical Programming Formulations

Data: users/subsets incidence matrix

$$
a_{i j}= \begin{cases}1 & \text { if } i \in I_{j,}, j \in J \\ 0 & \text { otherwise }\end{cases}
$$

Variables:
$x_{j}= \begin{cases}1 & \text { if } j \in S, \\ 0 & \text { otherwise }\end{cases}$ selection of subset I_{j}
$y_{i h}= \begin{cases}1 & \text { if } i \text { and } h \text { appear together in a selected subset, } \\ 0 & \text { otherwise }\end{cases}$
$z_{i}=\left\{\begin{array}{l}1 \text { if } i \text { is covered, } \\ 0 \text { otherwise }\end{array} \quad\right.$ coverage of user i

Max capacity covering WLAN (PC)

PCH: $\max \sum_{i \in I} \frac{1}{\sum_{h \in I} y_{i h}}$

$$
\sum_{j \in J} a_{i j} x_{j} \geq 1 \quad \forall i \in I
$$

full coverage

$$
a_{i j} a_{h j} x_{j} \leq y_{i h} \quad \forall i, h \in I, \forall \boldsymbol{j} \in \boldsymbol{J} \quad \text { definition of } y_{i h}
$$

$$
y_{i h} \geq 0 \quad \forall i, h \in I
$$

$$
x_{j} \in\{0,1\} \quad \forall j \in J
$$

Hyperbolic sum 0-1 constrained problem

Max capacity unconstrained WLAN (P)

$$
\begin{array}{llll}
\text { PH: } \max & \sum_{i \in I} \frac{z_{i}}{\sum_{h \in I} y_{i h}} & & \\
& \sum_{j \in J} a_{i j} x_{j} \geq z_{i} & \forall i \in I & \text { definition of } z_{i} \\
& a_{i j} a_{h j} x_{j} \leq y_{i h} & \forall i, h \in I, \forall j \in J & \text { definition of yih } \\
& 0 \leq z_{i} \leq 1 & \forall i \in I & \\
& y_{i h} \geq 0 & \forall i, h \in I & \\
& x_{j} \in\{0,1\} & \forall j \in J &
\end{array}
$$

Hyperbolic sum 0-1 constrained problem

Max fairness WLAN (PF)

$$
\begin{array}{llll}
\text { PFH: } \max & \min _{i \in I} \frac{1}{\sum_{h \in I} y_{i h}} & & \\
& \sum_{j \in J} a_{i j} x_{j} \geq 1 & \forall i \in I & \text { full coverage } \\
& a_{i j} a_{h j} x_{j} \leq y_{i h} & \forall i, h \in I, \forall j \in J & \text { definition of yih } \\
& y_{i h} \geq 0 & \forall i, h \in I & \\
& x_{j} \in\{0,1\} & \forall j \in J &
\end{array}
$$

Hyperbolic bottleneck 0-1 constrained problem

Solving Hyperbolic formulations

Problems PH and PCH cannot be solved by standard techniques
nor the algorithms studied for Hyperbolic unconstrained 0-1 problems [Hansen, Poggi de Aragão, Ribeiro 90: 91] can be extended to the constrained case

$$
\max \left\{\sum_{i} \frac{a_{i o}+\sum_{j} a_{i j} x_{j}}{b_{i o}+\sum_{j} b_{i j} x_{j}}, x_{j} \in\{0,1\}\right\}
$$

Problem PFH can be solved by a sequence of mixed integer linear systems

PFH: $\max \{\beta: \beta \in \operatorname{SFH}(\beta)\}$
Fairness $\beta \in[0,1]$
SFH(β):

$$
\begin{array}{ll}
1 \geq \beta\left(\sum_{h \in I} y_{i h}\right) & \forall i \in I \\
\sum_{j \in J} a_{i j} x_{j} \geq 1 & \forall i \in I \\
a_{i j} a_{h j} x_{j} \leq y_{i h} & \forall i, h \in I \\
y_{i h} \geq 0 & \forall i, h \in I, x_{j} \in\{0,1\} \quad \forall j \in J
\end{array}
$$

Optimal β can be found by binary search (solving a sequence of SFH(β))
Otherwise let $\alpha=1 / \beta$ and minimize α

Quadratic formulation (1)

$$
\begin{aligned}
& c_{j}=\sum_{i \in I_{j}} \frac{1}{\left|I_{j}\right|}=1 \\
& q_{j k}=\frac{\left|I_{j} \cap I_{k}\right|}{\left|I_{j} \cup I_{k}\right|}-\frac{\left|I_{j} \cap I_{k}\right|}{\left|I_{j}\right|}-\frac{\left|I_{j} \cap I_{k}\right|}{\left|I_{k}\right|} \quad\left(-1 \leq q_{i j} \leq 0\right)
\end{aligned}
$$

Quadratic formulation (1)

$$
\begin{array}{r}
\text { QPC: } \left.\max \quad \begin{array}{r}
\frac{1}{2} x Q x+c x \\
A x \geq 1 \\
x
\end{array}\right]\{0,1\}^{n} \\
\text { QP: } \max \quad \begin{array}{l}
\frac{1}{2} x Q x+c x \\
x
\end{array} \quad\{0,1\}^{n}
\end{array}
$$

Linear contribution: capacity of a non overlapping subset

Quadratic contribution: penalty due to the overlapping of two subsets

Quadratic formulation (1)

QPC and QP are equivalent to $P C$ and P if each element belongs to at most 2 subsets

In the other cases QPC and QP underestimate network capacity

QP can be approached by pseudoboolean techniques

QPC is a Quadratic Set Covering problem
Semidefinite Programming
Combinatorial optimization approaches
Bounding techniques derived from QAP (e.g. Gilmore and Lawler)

Quadratic formulation (1)

P_{j} : subproblem obtained by fixing $x_{j}=1$

$$
\left.\begin{array}{rl}
w_{j}=\max \frac{1}{2} & \sum_{k \in J} q_{j k} x_{k} \\
& \\
& \sum_{k \in J} a_{i k} \geq 1
\end{array} \quad \forall i \in I \backslash I_{j}\right]
$$

due to nonpositiveness of coefficients $q_{j k} P_{j}$ is a Set Covering

$$
\begin{aligned}
& W=\max \sum_{j \in J}\left(w_{j}+c_{j}\right) x_{j} \\
& \sum_{j \in J} a_{i j} \geq 1 \quad \forall i \in I \\
& x_{j} \in\{0,1\} \quad \forall \boldsymbol{j} \in \boldsymbol{J}
\end{aligned}
$$

After some fixing, W can be computed by a Set Covering

Quadratic formulation (1)

Claim: W is an upper bound for QPC

It is an upper bound also when we use relaxations instead of computing the exact solution of the set covering problems

Quadratic formulation (2)

Tradeoff between network capacity and cost

$$
\begin{equation*}
p_{j k}=\frac{\left|I_{j} \Delta I_{k}\right|}{\left|I_{j} \cup I_{k}\right|} \tag{jk}
\end{equation*}
$$

approximate measure of the capacity: tends to favor non overlapping subsets

$$
g_{j}=\text { installation cost }
$$

QPC': $\quad \max \left\{\frac{1}{2} x P x-\alpha g x: A x \geq 1, x \in\{0,1\}^{n}\right\}$
$Q P^{\prime}: \quad \max \left\{\frac{1}{2} x P x-\alpha g x, x \in\{0,1\}^{m}\right\}$
tradeoff parameter $\alpha>0$

Quadratic formulation (2)

QP can be solved in polynomial time (min cut computation)
Auxiliary graph $G=(N, A)$ with capacities

$$
\begin{aligned}
& \gamma_{j}^{+}=\max \left\{0, \frac{1}{2} \sum_{k \in J} p_{j k}-\alpha g_{j}\right\} \\
& \gamma_{j}^{-}=\max \left\{0,-\frac{1}{2} \sum_{k \in J} p_{j k}+\alpha g_{j}\right\}
\end{aligned}
$$

The minimum capacity s-t cut corresponds to the solution x maximizing the objective function of $Q P^{\prime}$ [Hammer 65]

Quadratic formulation (2)

The Lagrangian relaxation of QPC' can be solved efficiently

Minimization of a piecewise convex function

At each iteration the computation of a min cut gives the value of the Lagrangian function

Computational results Quadratic vs. Hyperbolic

Small instances $(|J|=10,|I|=100,300)$

Subsets $=$ circles in the plane (radii 50m, 100m, 200m)

Comparison of the objective functions:
Hyperbolic, Quadratic, Fairness, \# installed access points

Exact solutions computed by enumeration

Simple heuristic algorithms

Average on 10 instances

Full coverage: exact solutions

cs=10	Fairness exact				Hyperbolic exact				Quadratic exact			
	\#AP	Hyperbolic	Quadratic	fairness	\#AP	Hyperbolic	Quadratic	fairness	\# AP	Hyperbolic	Quadratic	fairness
$\mathrm{R}=50 \mathrm{~m}$	9.9			0.0509	9.9	9.3340	9.3229	0.0509	9.9	9.3340	9.3229	0.0509
$\mathrm{R}=100 \mathrm{~m}$	9.4			0.0358	9.4	7.4243	7.2618	0.0358	9.4	7.4243	7.2618	0.0358
$\mathrm{R}=200 \mathrm{~m}$	7.1			0.0193	7.0	4.3440	4.0155	0.0192	7.0	4.3381	4.0605	0.0191
$\mathrm{R}=50 \mathrm{~m}$	10.0			0.0179	10.0	9.3134	9.3054	0.0179	10.0	9.3134	9.3054	0.0179
$\mathrm{R}=100 \mathrm{~m}$	9.6			0.0122	9.6	7.4979	7.3711	0.0122	9.6	7.4979	7.3711	0.0122
$\mathrm{R}=200 \mathrm{~m}$	7.5			0.0063	7.5	4.2445	3.6443	0.0063	7.5	4.2146	3.6465	0.0063

Without covering constraints

$\mathrm{cs}=10$	Hyperbolic exact				Quadratic exact		
	\# AP	Hyperbolic	Quadratic	\# AP	Hyperbolic	Quadratic	
$\mathrm{R}=50 \mathrm{~m}$	9.8	9.3675	9.3675	9.8	9.3675	9.3675	
$\mathrm{R}=100 \mathrm{~m}$	8.8	7.5682	7.4691	8.5	7.5465	7.5465	
$\mathrm{R}=200 \mathrm{~m}$	5.9	4.7685	4.7685	5.9	4.7685	4.7685	
$\mathrm{R}=50 \mathrm{~m}$	9.9	9.3318	9.3317	9.9	9.3318	9.3318	
$\mathrm{R}=100 \mathrm{~m}$	8.9	7.6375	7.5433	8.5	7.6154	7.6108	
$\mathrm{R}=200 \mathrm{~m}$	6.0	4.6865	4.6508	5.9	4.6778	4.6778	

Full coverage: comparison exact and heuristic solutions

$\mathrm{cs}=10$	Hyperbolic		Quadratic	
	exact	heuristic	exact	heuristic
$\mathrm{R}=50 \mathrm{~m}$	9.3340	9.3340	9.3229	9.3229
$\mathrm{R}=100 \mathrm{~m}$	7.4243	7.4243	7.2618	7.2618
$\mathrm{R}=200 \mathrm{~m}$	4.3440	4.3440	4.0605	4.0605
$\mathrm{R}=50 \mathrm{~m}$	9.3134	9.3134	9.3054	9.3054
$\mathrm{R}=100 \mathrm{~m}$	7.4979	7.4979	7.3711	7.3711
$\mathrm{R}=200 \mathrm{~m}$	4.2445	4.2445	3.6465	3.6375

Full coverage: comparison exact and heuristic solutions

cs=10	Hyperbolic		Quadratic	
	exact	heuristic	exact	heuristic
$\mathrm{R}=50 \mathrm{~m}$	9.3675	9.3675	9.3675	9.3675
$\mathrm{R}=100 \mathrm{~m}$	7.5682	7.5682	7.5465	7.5465
$\mathrm{R}=200 \mathrm{~m}$	4.7685	4.7685	4.7685	4.7685
$\mathrm{R}=50 \mathrm{~m}$	9.3318	9.3318	9.3318	9.3318
$\mathrm{R}=100 \mathrm{~m}$	7.6375	7.6375	7.6108	7.6108
$\mathrm{R}=200 \mathrm{~m}$	4.6865	4.6865	4.6778	4.6778

Linearization: idea

A test point i may be covered by different activated antennas

Introduce a 0-1 variable $\xi_{\text {ir }}$ for each test point i and each subset r of possible activated antennas covering i

Linearization: notation

J_{i} subset of candidate sites covering i
$S(1)=2^{J_{i}} \backslash\{\boldsymbol{\varnothing}\}$ set of antennas configurations covering i we include the emptyset if the total coverage is not required
$J(r)$ subset of candidate sites of configuration r
For each configuration r in $S(i)$ we can compute the contribution of test point i to the total network capacity

$$
K_{i r}=\frac{1}{\left|\cup_{j \in J(r)} I_{j}\right|}
$$

(Kir can be computed also according to the quadratic formulation)

Linearization: model

$$
\begin{aligned}
\max & \sum_{i \in I} \sum_{r \in S(1)} K_{i r} \xi_{i r} \\
& \sum_{r \in S(i)} \xi_{i r}=1 \quad \forall i \in I \quad \text { (one configuration per test point) } \\
& \sum_{r: j \in J(r)} \xi_{i r}=x_{j} \quad \forall i \in I, \forall j \in J_{i} \\
& x_{j} \in\{0,1\} \quad \forall j \in J \\
& \xi_{i r} \geq 0 \quad \forall i \in I, r \in S(i)
\end{aligned}
$$

Instance generator

Generated on a geometric base (2D)

Avoided test points covered by a single candidate site

Computational results (1)

instance	QUADRATIC				HYPERBOLIC			
$\mid \mathbf{J} / / / \mathbf{I} / \mathbf{i d}$	Integer		LP		Integer		LP	
	time	value	time	value	time	value	time	value
50/25/1	0.1	12.7667	0.0	13.1833	0.2	12.7667	0.0	13.3083
50/50/1	0.4	13.2075	0.0	13.2427	0.7	13.2075	0.0	13.7656
50/100/1	9.9	13.1375	0.5	13.9411	22.1	13.6384	0.6	14.5831
75/37/1	5.8	13.4762	0.2	14.4708	17.3	13.4762	0.2	14.8961
75/75/1	0.8	18.6944	0.0	19.2456	2.3	19.0724	0.1	20.3144
75/150/1	5.3	19.5738	0.1	20.0742	19.3	19.6275	0.2	20.6583
100/50/1	10.8	20.5762	0.5	21.2996	53.0	20.6556	0.3	21.8009
100/100/1	69.2	21.2211	3.4	21.9479	1138.7	21.4125	4.6	23.3422

times in seconds on a 2.8 GHx Xeon

Strenghthening equalities

Consider a pair of test points i and h and a subset S of candidates sites among those covering both i and h

The selected configurations in S for i and h must coincide

$$
\sum_{r: j \in J(r) \cap S} \xi_{i r}=\sum_{r: h \in J(r) \cap S} \xi_{h r}
$$

Computational results (2)

instance	QUADRATIC				HYPERBOLIC			
\|J///I//id	Integer		LP		Integer		LP	
	time	value	time	value	time	value	time	value
100/50/1	10.8	20.5762	0.5	21.2996	53.0	20.6556	0.3	21.8009
$\|S\|=2$	1.4	20.5762	0.8	20.5762	8.3	20.6556	1.3	20.7803
$\|S\|=3$	2.8	20.5762	1.0	20.5762	5.1	20.6556	2.2	20.6556
$\|\mathbf{S}\|=2 /$ var 3	0.1	20.5762	0.1	20.5762	0.2	20.6556	0.1	20.6833
100/100/1	69.2	21.2211	3.4	21.9479	1138.7	21.4125	4.6	23.3422
$\|\mathrm{S}\|=2$	22.0	21.2211	10.6	21.2211	993.9	21.4125	131.0	21.8300
$\|S\|=3$	40.9	21.2211	17.1	21.2211	584.3	21.4125	302.8	21.6012
$\|S\|=2 /$ var 3	0.7	21.2211	0.7	21.2211	4.1	21.3257	1.9	21.5599

var3: generated variables for subsets of at most 3 candidate sites

Concluding remarks

New interesting combinatorial optimization problems

Hyperbolic 0-1 formulations

Quadratic formulations (good approximation)

Linearization and strenghthening

Column generation?

Frequency assignment

