SHIFTABLE INTERVALS

Federico Malucelli (Politecnico di Milano) Sara Nicoloso (IASI - CNR Roma)

INTERVAL GRAPHS

Applications:
Biology, Chemistry, Archeology, Scheduling,...

Easy problems on IG:
Maximum independent set (Minimum clique cover), Maximum clique (Minimun coloring), Minimum dominating set

SHIFTABLE INTERVALS

Set of triples $T=\left\{t_{i}=\left\langle I_{i}, r_{i}, \lambda_{i}\right\rangle, i=1, \ldots, n\right\}$
$\left[l_{i}, r_{i}\right]$: window i
λ_{i} : length of interval i
we assume that $l_{i}, r_{i}, \lambda_{i}$ are non negative integers an that $r_{i}-l_{i} \geq \lambda_{i}$ Intervals are allowed to shift inside the window

The difference between the left endpoint of the $i^{\text {th }}$ interval and l_{i} is called placement φ_{i}

Different placements yield different models and interval graphs

1

All feasible placements define a family of Interval Graphs F_{T}

PROBLEMS DEFINED ON SHIFTABLE INTERVALS

Problem Min $f(T) \quad$ [Max $f(T)$, respectively]

Given : set of triples T, and
a function $f: F_{T} \rightarrow Z_{+}$
Find: a graph $G \in F_{T}$ (i.e. a placement)
such that $f(G)$ is minimum [maximum, respectively]
Examples:
Min clique number,
Max stability number,
Min size of the dominating set,
Max clique number, ...

OVERVIEW

- Definitions and properties of F_{T}
- Minimum maximum clique (Min $\omega(T)$): complexity, bounds, special easy cases
- Maximum maximum independent set ($\operatorname{Max} \alpha(T)$): complexity, bounds, special easy cases
- Minimum dominating set size (Min d(T)): complexity, bounds, special easy cases

PROPERTIES OF F_{T}

1

H_{T} : Interval Graph defined by the windows
strong edge: it belongs to any $G \in F_{T}$ (whatever are the placements, the two intervals intersect);
weak edges: all the edges that are not strong
overlapping vertex: whatever is the placement of the corresponding interval a portion of the window is always "covered".

PROPERTIES OF F_{T}

Theorem:
There are no strong edges between non-overlapping vertices.

Theorem:
Consider a non-overlapping vertex v : all the vertices conneted to v by strong edges are overlapping and pairwise connected by strong edges.

A triple set T is proper if Interval Graph H_{T} is a proper interval graph.
(there is no interval properly contained into any other)

MIN MAX CLIQUE (Min $\omega(T)$)

All the results apply also to the Min Max chromatic number.

Theorem:
The problem is NP-Hard
reduction from 3-Partition:
given $3 m+1$ positive integers $b_{1}, \ldots, b_{3 m}, B$

$$
\Sigma b_{i}=m B
$$

find a partition into m subsets of 3 elements whose sum is B
$T=\left\{t_{i}=\left\langle 0, B, b_{i}\right\rangle, i=1, \ldots, 3 m\right\}$

Does there exist a placement of the intervals such that the clique number of the corresponding Interval Graph is no more than m ?

MIN MAX CLIQUE

Lower and Upper bounds

Let $A=\left(V, E^{S}\right)$ be the subgraph of H_{T} defined by the strong edges.

Theorem:

$$
\omega(\boldsymbol{A}) \leq \operatorname{Min} \omega(T) \leq \omega\left(H_{T}\right)
$$

A is a subgraph of any $G \in F_{T}$; any $G \in F_{T}$ is a subgraph of H_{T}.
$\omega(A)$ can be computed in polynomial time even if A is not an interval graph

Any complete subgraph of A contains at most one non overlapping vertex

$$
\omega(A)=\{\omega(A), \max \{|\{v\} \cup A d j s(v)|\}: v \in V N\}
$$

where A^{\prime} is the subgraph of A induced by the overlapping vertices (which is an Interval Graph)
A max clique in A is either composed by one non overlapping vertex adjacent to overlapping ones, or by overlapping vertices only.

Consider the Min $\omega(T)$ problem in decisional form Let $c_{h}(W)$ be the rightest coordinate contained into exactly h intervals of W (0 if such coordinate does not exist).

Algorithm $\mathrm{m} M-C$:
begin
for $i=1, \ldots, n$ do $\varphi i:=$ undefined;
let $W:=\varnothing$;
for $i=1, \ldots, n$ do begin
if $c_{h}(W)>r_{i}-\lambda_{i}$ then return(NO) and stop
else begin
$\varphi i=\max \{0, \operatorname{ch}(W)-l i\} ; W:=W \cup\left\{\left(t_{i}, \varphi i\right)\right\}$;
end;
end;
return(YES):
end.

Algorithm mM-C solves exactly the Min $\omega(T)$ problem in decision form when T is a set of proper non increasing triples.

A triple set T is proper non increasing if and only if H_{T} is proper and $\lambda_{i} \geq \lambda_{j}$ for any $i<j$.

The optimization problem can be solved by applying a binary search on h.

The complexity is $O(n \log n)$.

MAX MAX CLIQUE (Max $\omega(T)$)

The problem can be solved trivially:
Find the maximum clique C of H_{T} :
Place the intervals so that those whose window belongs to C intersect.

MIN MAX INDEPENDENT SET (Max $\alpha(T)$)

All the results apply also to the Max Max Clique Cover.

Theorem:
The problem is NP-Hard

Reduction from the problem of minimizing the tardy jobs in a one machine scheduling with ready and due times
ready time $\leftrightarrow I_{i}$
due times $\leftrightarrow r_{i}$
processing times $\leftrightarrow \lambda_{i}$
jobs scheduled on time \leftrightarrow independent set

MAX MAX INDEPENDENT SET (Max $\alpha(T)$)

Lower and Upper bounds
Let $A=\left(V, E^{S}\right)$ be the subgraph of H_{T} defined by the strong edges.

Theorem:

$$
\alpha\left(H_{T}\right) \leq \operatorname{Max} \alpha(T) \leq \alpha(\boldsymbol{A})
$$

A is a subgraph of any $G \in F_{T}$; any $G \in F_{T}$ is a subgraph of H_{T}.
$\alpha(A)$ can be computed easily as in the case of $\omega(A)$

Algorithm MM-IS
begin

$$
\begin{aligned}
& \text { for } i=1, \ldots, n \text { do } \varphi i:=0 \text {; } \\
& \text { let } y:=\varnothing \text {; } \\
& p:=I_{1}: \\
& \text { for } i=1, \ldots, n \text { do }
\end{aligned}
$$

$$
\text { if } p \leq r_{i}-\lambda_{i} \quad \text { then begin }
$$

$$
\varphi i:=\max \{0, p-1 i\} ;
$$

$$
Y:=Y \cup\{\langle t i, \varphi i>\} ;
$$

$$
p:=l_{i}+\varphi i+\lambda_{i}
$$

end
end.

Algorithm $m M-C$ solves exactly the $\operatorname{Max} \alpha(T)$ problem when T is a set of proper non decreasing triples.

A triple set T is proper non-decreasing if and only if H_{T} is proper and $\lambda_{i} \leq \lambda_{j}$ for any $i<j$.

If the interval are already sorted the complexity of the algorithm is linear.

MIN MAX INDEPENDENT SET $(\operatorname{Min} \alpha(T))$

The problem can be solved trivially
by exploiting the equivalence between the maximum independent set problem and the minimum covering by cliques in interval graphs

Find the minimum covering by cliques Γ of H_{T} :
For each clique C in Γ place the intervals so that those whose window belongs to C intersect.

MIN DOMINATING SET (Min $d(T))$

Given a graph $G=(V, E)$ a subset of nodes $D_{G} \subseteq V$ is a dominating set iff for any $u \in V \backslash D_{G}$ there exists a $v \in D_{G}$ such that edge $(u, v) \in E$.

Theorem:
The problem of finding the placement that minimizes the cardinality of the dominating set $(\operatorname{Min} d(T))$ is NP-Hard.

Reduction from 3-Partition.

MIN DOMINATING SET (Min d(T))

Lower and Upper bounds

Theorem:

$$
\left|D_{H}\right| \leq d(T) \leq \alpha(H) .
$$

The derived set of triples T_{d} associated to T is obtained by removing from T all triples whose window properly contains another window of T.

$H_{T_{d}}$ is a proper Interval Graph

Theorem:

$$
d(T) \leq d\left(T_{d}\right)
$$

$d\left(T_{d}\right)$ can be computed in polynomial time by a greedy algorithm
Algorithm Greedy:
let $D:=\varnothing$;
unmark all triples in T;
repeat
let π be the leftmost right endpoint of an unmarked triple in $T \backslash D$
let $A=\left\{i: l_{i} \leq \pi \leq r_{i}, i \notin D\right\}$;
set $\varphi_{i}=\min \left\{r_{i}-I_{i}-\lambda_{i}, \pi-I_{i}\right\}$ for all $i \in A$;
SELECTION PHASE:
let $j \in \boldsymbol{A}$ be such that $I_{j}+\varphi_{j}+\lambda_{j}=\max \left\{I_{i}+\varphi_{i}+\lambda_{j}: i \in A\right\}$;
insert j into D :
mark all triples t_{i} such that $l_{i} \leq l_{j}+\varphi_{j}+\lambda_{j}$:
until all triples are marked.
The complexity of the algorithm is $O\left(n^{2}\right)$

CONCLUSIONS

- Extension of the Interval Graphs
- New modeling framework
- Characterization of classical problems (complexity and easy cases)
- Computational experience in a companion paper

FUTURE WORKS

- Characterization of the family of graphs F_{T}
- Extension to Circular Arc Graphs

